744 research outputs found

    Collision geometry fluctuations and triangular flow in heavy-ion collisions

    Full text link
    We introduce the concepts of participant triangularity and triangular flow in heavy-ion collisions, analogous to the definitions of participant eccentricity and elliptic flow. The participant triangularity characterizes the triangular anisotropy of the initial nuclear overlap geometry and arises from event-by-event fluctuations in the participant-nucleon collision points. In studies using a multi-phase transport model (AMPT), a triangular flow signal is observed that is proportional to the participant triangularity and corresponds to a large third Fourier coefficient in two-particle azimuthal correlation functions. Using two-particle azimuthal correlations at large pseudorapidity separations measured by the PHOBOS and STAR experiments, we show that this Fourier component is also present in data. Ratios of the second and third Fourier coefficients in data exhibit similar trends as a function of centrality and transverse momentum as in AMPT calculations. These findings suggest a significant contribution of triangular flow to the ridge and broad away-side features observed in data. Triangular flow provides a new handle on the initial collision geometry and collective expansion dynamics in heavy-ion collisions.Comment: 8 pages, 8 figures, correction after publication, Fig8b has been corrected: The pt selection in AMPT calculation has been changed to match the selection in STAR dat

    High Field de Haas - van Alphen Studies of the Fermi Surfaces of LaMIn5_{5} (M = Co, Rh, Ir)

    Full text link
    We report measurements of the de Haas - van Alphen effect on a series of compounds, LaMIn5_{5} (M = Co, Rh, Ir). The results show that each of the Co and Ir Fermi surfaces (FSs) exhibit some portions that are two dimensional and some portions that are three dimensional. The most two dimensional character is exhibited in LaCoIn5_{5}, less two dimensional behavior is seen in LaIrIn5_{5}, no part of Fermi surface of LaRhIn5_{5} is found to have a two dimensional character. Thus the two dimensionality of portions of the FSs is largely determined by the d character of the energy bands while all of the effective masses remain \leq 1.2. This fact has implications for the causes of the heavy fermion nature of superconductivity and magnetism in the Ce-based compounds having the similar composition and structure. All of the measurements were performed at the National High Magnetic Field Laboratory using either cantilever magnetometry or field modulation methods.Comment: 10 pages, 4 figure

    The Fermi surface of CeCoIn5: dHvA

    Full text link
    Measurements of the de Haas - van Alphen effect in the normal state of the heavy Fermion superconductor CeCoIn5 have been carried out using a torque cantilever at temperatures ranging from 20 to 500 mK and in fields up to 18 tesla. Angular dependent measurements of the extremal Fermi surface areas reveal a more extreme two dimensional sheet than is found in either CeRhIn5 or CeIrIn5. The effective masses of the measured frequencies range from 9 to 20 m*/m0.Comment: 4 pages, 2 figures, submitted to PRB Rapid

    Study on initial geometry fluctuations via participant plane correlations in heavy ion collisions: part II

    Get PDF
    Further investigation of the participant plane correlations within a Glauber model framework is presented, focusing on correlations between three or four participant planes of different order. A strong correlation is observed for cos(2Φ2+3Φ35Φ5)\cos(2\Phi_{2}^*+3\Phi_{3}^*-5\Phi_{5}^*) which is a reflection of the elliptic shape of the overlap region. The correlation between the corresponding experimental reaction plane angles can be easily measured. Strong correlations of similar geometric origin are also observed for cos(2Φ2+4Φ46Φ6)\cos(2\Phi_{2}^*+4\Phi_{4}^*-6\Phi_{6}^*), cos(2Φ23Φ34Φ4+5Φ5)\cos(2\Phi_2^*-3\Phi_3^*-4\Phi_4^*+5\Phi_5^*), cos(6Φ2+3Φ34Φ45Φ5)\cos(6\Phi_2^*+3\Phi_3^*-4\Phi_4^*-5\Phi_5^*), cos(Φ12Φ23Φ3+4Φ4)\cos(\Phi_1^*-2\Phi_2^*-3\Phi_3^*+4\Phi_4^*), cos(Φ1+6Φ23Φ34Φ4)\cos(\Phi_1^*+6\Phi_2^*-3\Phi_3^*-4\Phi_4^*), and cos(Φ1+2Φ2+3Φ36Φ6)\cos(\Phi_1^*+2\Phi_2^*+3\Phi_3^*-6\Phi_6^*), which are also measurable. Experimental measurements of the corresponding reaction plane correlators in heavy ion collisions at RHIC and the LHC may improve our understanding of the physics underlying the measured higher order flow harmonics.Comment: 5 pages, 5 figure

    Specific Heat of Ce(1-x)La(x)RhIn(5) in Zero and Applied Magnetic Field: A Very Rich Phase Diagram

    Full text link
    Specific heat and magnetization results as a function of field on single- and poly-crystalline samples of Ce(1-x)La(x)RhIn(5) show 1.) a specific heat gamma of about 100 mJ/moleK^2 (in agreement with recent dHvA results of Alvers et al.); 2.) upturns at low temperatures in C/T and chi that fit a power law behavior ( Griffiths phase non-Fermi liquid behavior); 3.) a field induced anomaly in C/T as well as M vs H behavior in good agreement with the recent Griffiths phase theory of Castro Neto and Jones, where M~H at low field, M ~ H^lambda above a crossover field, C/T ~ T^(-1+lambda) at low field, and C/T ~ (H^(2+lambda/2)/T^(3-lambda/2))*exp(-mu(eff)H/T) above the same crossover field as determined in the magnetization and where lambda is independently determined from the temperature dependence of chi at low temperatures, chi ~ T^(-1+lambda) and low fields.Comment: 13 pages, 9 figures, to be published in Physical Review

    Towards a common origin of the elliptic flow, ridge and alignment

    Full text link
    It is claimed that elliptic flow, ridge and alignment are effects of azimuthal asymmetry, which have a common origin evolving with primary energy and stemming from the general structure of field-theoretical matrix elements. It interrelates a new ridge-phenomenon, recently found at the LHC and RHIC, with known coplanarity feature observed in collider jet physics as well as in cosmic ray studies.Comment: 4 pages, few typos fixed, reference added, version published in JETP Letter

    Anomalous NMR Magnetic Shifts in CeCoIn_5

    Full text link
    We report ^{115}In and ^{59}Co Nuclear Magnetic Resonance (NMR) measurements in the heavy fermion superconductor CeCoIn_5 above and below T_c. The hyperfine couplings of the In and Co are anisotropic and exhibit dramatic changes below 50K due to changes in the crystal field level populations of the Ce ions. Below T_c the spin susceptibility is suppressed, indicating singlet pairing.Comment: 4 pages, 4 figure

    Wounded nucleon model with realistic nucleon-nucleon collision profile and observables in relativistic heavy-ion collisions

    Full text link
    We investigate the influence of the nucleon-nucleon collision profile (probability of interaction as a function of the nucleon-nucleon impact parameter) in the wounded nucleon model and its extensions on several observables measured in relativistic heavy-ion collisions. We find that the participant eccentricity coefficient, ϵ\epsilon^\ast, as well as the higher harmonic coefficients, ϵn\epsilon_n^\ast, are reduced by 10-20% for mid-peripheral collisions when the realistic (Gaussian) profile is used, as compared to the case with the commonly-used hard-sphere profile. Similarly, the multiplicity fluctuations, treated as the function of the number of wounded nucleons in one of the colliding nuclei, are reduced by 10-20%. This demonstrates that the Glauber Monte Carlo codes should necessarily use the realistic nucleon-nucleon collision profile in precision studies of these observables. The Gaussian collision profile is built-in in {\tt GLISSANDO}.Comment: 8 pages, 7 figure

    Localized f electrons in CexLa1-xRhIn5: dHvA Measurements

    Full text link
    Measurements of the de Haas-van Alphen effect in CexLa1-xRhIn5 reveal that the Ce 4f electrons remain localized for all x, with the mass enhancement and progressive loss of one spin from the de Haas-van Alphen signal resulting from spin fluctuation effects. This behavior may be typical of antiferromagnetic heavy fermion compounds, inspite of the fact that the 4f electron localization in CeRhIn5 is driven, in part, by a spin-density wave instability.Comment: 4 pages, 4 figures, submitted to PR
    corecore