5 research outputs found

    Inertio-capillary rebound of a droplet impacting a fluid bath

    Get PDF
    The rebound of droplets impacting a deep fluid bath is studied both experimentally and theoretically. Millimetric drops are generated using a piezoelectric droplet-on-demand generator and normally impact a bath of the same fluid. Measurements of the droplet trajectory and other rebound metrics are compared directly to the predictions of a linear quasi-potential model, as well as fully resolved direct numerical simulations (DNS) of the unsteady Navier-Stokes equations. Both models resolve the time-dependent bath and droplet shapes in addition to the droplet trajectory. In the quasi-potential model, the droplet and bath shape are decomposed using orthogonal function decompositions leading to two sets of coupled damped linear harmonic oscillator equations solved using an implicit numerical method. The underdamped dynamics of the drop are directly coupled to the response of the bath through a single-point kinematic match condition which we demonstrate to be an effective and efficient model in our parameter regime of interest. Starting from the inertio-capillary limit in which both gravitational and viscous effects are negligible, increases in gravity or viscosity lead to a decrease in the coefficient of restitution and an increase in the contact time. The inertio-capillary limit defines an upper bound on the possible coefficient of restitution for droplet-bath impact, depending only on the Weber number. The quasi-potential model is able to rationalize historical experimental measurements for the coefficient of restitution, first presented by Jayaratne and Mason (1964).Comment: 33 pages, 13 figure

    Impact of a rigid sphere onto an elastic membrane

    Get PDF
    We study the axisymmetric impact of a rigid sphere onto an elastic membrane theoretically and experimentally. We derive governing equations from first principles and impose natural kinematic and geometric constraints for the coupled motion of the sphere and the membrane during contact. The free-boundary problem of finding the contact surface, over which forces caused by the collision act, is solved by an iterative method. This results in a model that produces detailed predictions of the trajectory of the sphere, the deflection of the membrane, and the pressure distribution during contact. Our model predictions are validated against our direct experimental measurements. Moreover, we identify new phenomena regarding the behaviour of the coefficient of restitution for low impact velocities, the possibility of multiple contacts during a single rebound, and energy recovery on subsequent bounces. Insight obtained from this model problem in contact mechanics can inform ongoing efforts towards the development of predictive models for contact problems that arise naturally in multiple engineering applications

    Bidirectional Wave-Propelled Capillary Spinners

    Full text link
    When a solid body floats at the interface of a vibrating liquid bath, the relative motion between the object and interface generates outwardly propagating surface waves. It has recently been demonstrated that millimetric objects with fore-aft mass asymmetry generate an associated asymmetric wavefield and consequently self-propel in unidirectional motion. Harnessing this wave-powered mechanism of propulsion, we here demonstrate that chiral objects placed on a vibrating fluid interface are set into steady, yet reversible, rotation, with the angular speed and direction of rotation controlled by the interplay between object geometry and driving parameters. Scaling laws and a simplified model of the wavefield reveal the underlying physical mechanism of rotation, while collapsing experimental measurements of the angular velocity across parameters. Leveraging the control over the chiral object's direction of rotation, we then demonstrate that a floating body with an asymmetric mass distribution and chirality can be remotely steered along two-dimensional trajectories via modulation of the driving frequency alone. This accessible and tunable macroscopic system serves as a potential platform for future explorations of chiral active and driven matter, and demonstrates a mechanism by which wave-mediated fluid forces can be manipulated for directed propulsion

    Inertio-capillary rebound of a droplet impacting a fluid bath

    Get PDF
    The rebound of droplets impacting a deep fluid bath is studied both experimentally and theoretically. Millimetric drops are generated using a piezoelectric droplet-on-demand generator and normally impact a bath of the same fluid. Measurements of the droplet trajectory and other rebound metrics are compared directly with the predictions of a linear quasipotential model, as well as fully resolved direct numerical simulations of the unsteady Navier–Stokes equations. Both models resolve the time-dependent bath and droplet shapes in addition to the droplet trajectory. In the quasipotential model, the droplet and bath shape are decomposed using orthogonal function decompositions leading to two sets of coupled damped linear harmonic oscillator equations solved using an implicit numerical method. The underdamped dynamics of the drop are directly coupled to the response of the bath through a single-point kinematic match condition which we demonstrate to be an effective and efficient model in our parameter regime of interest. Starting from the inertio-capillary limit in which both gravitational and viscous effects are negligible, increases in gravity or viscosity lead to a decrease in the coefficient of restitution and an increase in the contact time. The inertio-capillary limit defines an upper bound on the possible coefficient of restitution for droplet–bath impact, depending only on the Weber number. The quasipotential model is able to rationalize historical experimental measurements for the coefficient of restitution, first presented by Jayaratne & Mason (Proc. R. Soc. Lond. A, vol. 280, issue 1383, 1964, pp. 545–565)
    corecore