6 research outputs found

    Spatial distribution and risk factors of Brucellosis

    Get PDF
    Background: The role of wildlife as a brucellosis reservoir for humans and domestic livestock remains to be properly established. The aim of this work was to determine the aetiology, apparent prevalence, spatial distribution and risk factors for brucellosis transmission in several Iberian wild ungulates. Methods: A multi-species indirect immunosorbent assay (iELISA) using Brucella S-LPS antigen was developed. In several regions having brucellosis in livestock, individual serum samples were taken between 1999 and 2009 from 2,579 wild bovids, 6,448 wild cervids and4,454 Eurasian wild boar (Sus scrofa), and tested to assess brucellosis apparent prevalence. Strains isolated from wild boar were characterized to identify the presence of markers shared with the strains isolated from domestic pigs. Results: Mean apparent prevalence below 0.5% was identified in chamois (Rupicapra pyrenaica), Iberian wild goat (Capra pyrenaica), and red deer (Cervus elaphus). Roe deer (Capreolus capreolus), fallow deer (Dama dama), mouflon (Ovis aries) and Barbary sheep (Ammotragus lervia) tested were seronegative. Only one red deer and one Iberian wild goat resulted positive in culture, isolating B. abortus biovar 1 and B. melitensis biovar 1, respectively. Apparent prevalence in wild boar ranged from 25% to 46% in the different regions studied, with the highest figures detected in South-Central Spain. The probability of wild boar being positive in the iELISA was also affected by age, age-by-sex interaction, sampling month, and the density of outdoor domestic pigs. A total of 104 bacterial isolates were obtained from wild boar, being all identified as B. suis biovar 2. DNA polymorphisms were similar to those found in domestic pigs. Conclusions: In conclusion, brucellosis in wild boar is widespread in the Iberian Peninsula, thus representing an important threat for domestic pigs. By contrast, wild ruminants were not identified as a significant brucellosis reservoir for livestock

    Clonal chromosomal mosaicism and loss of chromosome Y in elderly men increase vulnerability for SARS-CoV-2

    Full text link
    The pandemic caused by severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2, COVID-19) had an estimated overall case fatality ratio of 1.38% (pre-vaccination), being 53% higher in males and increasing exponentially with age. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, we found 133 cases (1.42%) with detectable clonal mosaicism for chromosome alterations (mCA) and 226 males (5.08%) with acquired loss of chromosome Y (LOY). Individuals with clonal mosaic events (mCA and/or LOY) showed a 54% increase in the risk of COVID-19 lethality. LOY is associated with transcriptomic biomarkers of immune dysfunction, pro-coagulation activity and cardiovascular risk. Interferon-induced genes involved in the initial immune response to SARS-CoV-2 are also down-regulated in LOY. Thus, mCA and LOY underlie at least part of the sex-biased severity and mortality of COVID-19 in aging patients. Given its potential therapeutic and prognostic relevance, evaluation of clonal mosaicism should be implemented as biomarker of COVID-19 severity in elderly people. Among 9578 individuals diagnosed with COVID-19 in the SCOURGE study, individuals with clonal mosaic events (clonal mosaicism for chromosome alterations and/or loss of chromosome Y) showed an increased risk of COVID-19 lethality

    On the tectonic origin of Iberian topography

    Get PDF
    The present-day topography of the Iberian peninsula can be considered as the result of the MesozoicCenozo–ic tectonic evolution of the Iberian plate (including rifting and basin formation during the Mesozoic and compression and mountain building processes at the borders and inner part of the plate, during the Tertiary, followed by Neogene rifting on the Mediterranean side) and surface processes acting during the Quaternary. The northern-central part of Iberia (corresponding to the geological units of the Duero Basin, the Iberian Chain, and the Central System) shows a mean elevation close to one thousand meters above sea level in average, some hundreds of meters higher than the southern half of the Iberian plate. This elevated area corresponds to (i) the top of sedimentation in Tertiary terrestrial endorheic sedimentary basins (Paleogene and Neogene) and (ii) planation surfaces developed on Paleozoic and Mesozoic rocks of the mountain chains surrounding the Tertiary sedimentary basins. Both types of surfaces can be found in continuity along the margins of some of the Tertiary basins. The Bouguer anomaly map of the Iberian peninsula indicates negative anomalies related to thickening of the continental crust. Correlations of elevation to crustal thickness and elevation to Bouguer anomalies indicate that the dierent landscape units within the Iberian plate can be ascribed to dierent patterns: (1) The negative Bouguer anomaly in the Iberian plate shows a rough correlation with elevation, the most important gravity anomalies being linked to the Iberian Chain. (2) Most part of the so-called Iberian Meseta is linked to intermediate-elevation areas with crustal thickening; this pattern can be applied to the two main intraplate mountain chains (Iberian Chain and Central System) (3) The main mountain chains (Pyrenees and Betics) show a direct correlation between crustal thickness and elevation, with higher elevation/crustal thickness ratio for the Central Systemvs. the Betics and the Pyrenees. Other features of the Iberian topography, namely the longitudinal pro le of the main rivers in the Iberian peninsula and the distribution of present-day endorheic areas, are consistent with the Tertiary tectonic evolution and the change from an endorheic to an exorheic regime during the Late Neogene and the Quaternary. Some of the problems involving the timing and development of the Iberian Meseta can be analysed considering the youngest reference level, constituted by the shallow marine Upper Cretaceous limestones, that indicates strong dierences induced by (i) the overall Tertiary and recent compression in the Iberian plate, responsible for dierences in elevation of the reference level of more than 6 km between the mountain chains and the endorheic basins and (ii) the eect of Neogene extension in the Mediterranean margin, responsible for lowering several thousands of meters toward the East and uplift of rift shoulders. A part of the recent uplift within the Iberian plate can be attributed o sostatic uplift in zones of crustal thickening
    corecore