89 research outputs found

    Using coding and non-coding rare variants to target candidate genes in patients with severe tinnitus

    Get PDF
    Tinnitus is the phantom percept of an internal non-verbal set of noises and tones. It is reported by 15% of the population and it is usually associated with hearing and/or brain disorders. The role of structural variants (SVs) in coding and non-coding regions has not been investigated in patients with severe tinnitus. In this study, we performed whole-genome sequencing in 97 unrelated Swedish individuals with chronic tinnitus (TIGER cohort). Rare single nucleotide variants (SNV), large structural variants (LSV), and copy number variations (CNV) were retrieved to perform a gene enrichment analysis in TIGER and in a subgroup of patients with severe tinnitus (SEVTIN, n = 34), according to the tinnitus handicap inventory (THI) scores. An independent exome sequencing dataset of 147 Swedish tinnitus patients was used as a replication cohort (JAGUAR cohort) and population-specific datasets from Sweden (SweGen) and Non-Finish Europeans (NFE) from gnomAD were used as control groups. SEVTIN patients showed a higher prevalence of hyperacusis, hearing loss, and anxiety when they were compared to individuals in the TIGER cohort. We found an enrichment of rare missense variants in 6 and 8 high-constraint genes in SEVTIN and TIGER cohorts, respectively. Of note, an enrichment of missense variants was found in the CACNA1E gene in both SEVTIN and TIGER. We replicated the burden of missense variants in 9 high-constrained genes in the JAGUAR cohort, including the gene NAV2, when data were compared with NFE. Moreover, LSVs in constrained regions overlapping CACNA1E, NAV2, and TMEM132D genes were observed in TIGER and SEVTIN.publishedVersio

    Burden of rare variants in synaptic genes in patients with severe tinnitus: An exome based extreme phenotype study

    Get PDF
    Background: tinnitus is a heterogeneous condition associated with audiological and/or mental disorders. Chronic, severe tinnitus is reported in 1% of the population and it shows a relevant heritability, according to twins, adoptees and familial aggregation studies. The genetic contribution to severe tinnitus is unknown since large genomic studies include individuals with self-reported tinnitus and large heterogeneity in the phenotype. The aim of this study was to identify genes for severe tinnitus in patients with extreme phenotype. Methods: for this extreme phenotype study, we used three different cohorts with European ancestry (Spanish with Meniere disease (MD), Swedes tinnitus and European generalized epilepsy). In addition, four independent control datasets were also used for comparisons. Whole-exome sequencing was performed for the MD and epilepsy cohorts and whole-genome sequencing was carried out in Swedes with tinnitus. Findings: we found an enrichment of rare missense variants in 24 synaptic genes in a Spanish cohort, the most significant being PRUNE2, AKAP9, SORBS1, ITGAX, ANK2, KIF20B and TSC2 (p < 2E 04), when they were compared with reference datasets. This burden was replicated for ANK2 gene in a Swedish cohort with 97 tinnitus individuals, and in a subset of 34 Swedish patients with severe tinnitus for ANK2, AKAP9 and TSC2 genes (p < 2E 02). However, these associations were not significant in a third cohort of 701 generalized epilepsy individuals without tinnitus. Gene ontology (GO) and gene-set enrichment analyses revealed several pathways and biological processes involved in severe tinnitus, including membrane trafficking and cytoskeletal protein binding in neurons. Interpretation: a burden of rare variants in ANK2, AKAP9 and TSC2 is associated with severe tinnitus. ANK2, encodes a cytoskeleton scaffolding protein that coordinates the assembly of several proteins, drives axonal branching and influences connectivity in neurons

    Cytokine profiling and transcriptomics in mononuclear cells define immune variants in Meniere Disease

    Get PDF
    Meniere Disease (MD) is a chronic inner ear disorder characterized by vertigo attacks, sensorineural hearing loss, tinnitus, and aural fullness. Extensive evidence supporting the inflammatory etiology of MD has been found, therefore, by using transcriptome analysis, we aim to describe the inflammatory variants of MD. We performed Bulk RNAseq on 45 patients with definite MD and 15 healthy controls. MD patients were classified according to their basal levels of IL-1β into 2 groups: high and low. Differentially expression analysis was performed using the ExpHunter Suite, and cell type proportion was evaluated using the estimation algorithms xCell, ABIS, and CIBERSORTx. MD patients showed 15 differentially expressed genes (DEG) compared to controls. The top DEGs include IGHG1 (p = 1.64 [Formula: see text] 10-6) and IGLV3-21 (p = 6.28 [Formula: see text] 10-3), supporting a role in the adaptative immune response. Cytokine profiling defines a subgroup of patients with high levels of IL-1β with up-regulation of IL6 (p = 7.65 [Formula: see text] 10-8) and INHBA (p = 3.39 [Formula: see text] 10-7) genes. Transcriptomic data from peripheral blood mononuclear cells support a proinflammatory subgroup of MD patients with high levels of IL6 and an increase in naïve B-cells, and memory CD8+ T cells

    Targeting the Hedgehog Pathway in Rhabdomyosarcoma

    Get PDF
    Embryonic pathways; Paediatric cancer; Soft tissue sarcomasVies embrionàries; Càncer pediàtric; Sarcomes de teixits tousVías embrionarias; Cáncer pediátrico; Sarcomas de tejidos blandosAberrant activation of the Hedgehog (Hh) signalling pathway is known to play an oncogenic role in a wide range of cancers; in the particular case of rhabdomyosarcoma, this pathway has been demonstrated to be an important player for both oncogenesis and cancer progression. In this review, after a brief description of the pathway and the characteristics of its molecular components, we describe, in detail, the main activation mechanisms that have been found in cancer, including ligand-dependent, ligand-independent and non-canonical activation. In this context, the most studied inhibitors, i.e., SMO inhibitors, have shown encouraging results for the treatment of basal cell carcinoma and medulloblastoma, both tumour types often associated with mutations that lead to the activation of the pathway. Conversely, SMO inhibitors have not fulfilled expectations in tumours—among them sarcomas—mostly associated with ligand-dependent Hh pathway activation. Despite the controversy existing regarding the results obtained with SMO inhibitors in these types of tumours, several compounds have been (or are currently being) evaluated in sarcoma patients. Finally, we discuss some of the reasons that could explain why, in some cases, encouraging preclinical data turned into disappointing results in the clinical setting.This article was funded by grants from: Institut Català d’Oncologia (ICO); Instituto de Salud Carlos III (PI18/00398 and FI18/00178); ACCIÓ (COMRDI15-1-0014); Fundació la Marató de TV3; Fundació Albert Bosch; Rotary Clubs Barcelona Eixample, Barcelona Diagonal, Santa Coloma de Gramanet, München-Blutenburg, Deutschland Gemeindienst e.V. and others from Barcelona and province; Fundation Amics Joan Petit; Del Hospital a la cathedral Initiative by Xavi Vallès; and Mi compañero de viaje Association

    Integrin alpha9 emerges as a key therapeutic target to reduce metastasis in rhabdomyosarcoma and neuroblastoma

    Get PDF
    Dissemination; Paediatric cancer; Solid tumoursDiseminación; Cáncer pediátrico; Tumores sólidosDisseminació; Càncer pediàtric; Tumors sòlidsThe majority of current cancer therapies are aimed at reducing tumour growth, but there is lack of viable pharmacological options to reduce the formation of metastasis. This is a paradox, since more than 90% of cancer deaths are attributable to metastatic progression. Integrin alpha9 (ITGA9) has been previously described as playing an essential role in metastasis; however, little is known about the mechanism that links this protein to this process, being one of the less studied integrins. We have now deciphered the importance of ITGA9 in metastasis and provide evidence demonstrating its essentiality for metastatic dissemination in rhabdomyosarcoma and neuroblastoma. However, the most translational advance of this study is to reveal, for the first time, the possibility of reducing metastasis by pharmacological inhibition of ITGA9 with a synthetic peptide simulating a key interaction domain of ADAM proteins, in experimental metastasis models, not only in childhood cancers but also in a breast cancer model.This research was supported by grants from: Institut Català d’Oncologia (ICO); Instituto de Salud Carlos III (PI18/00398 and FI18/00178); ACCIÓ (COMRDI15-1-0014); Fundació la Marató de TV3; Fundació A. BOSCH; Rotary Clubs Barcelona Eixample, Barcelona Diagonal, Santa Coloma de Gramanet, München-Blutenburg, Deutschland Gemeindienst e.V. and others from Barcelona and province; Eric Abidal Foundation; Del Hospital a la catedral Initiative by Xavi Vallès; and Mi compañero de viaje Association

    Mission ORCA: orbit refinement for collision avoidance

    Get PDF
    Forecasting of collisions between resident space objects (RSOs) is becoming critical for the future exploitation of near-Earth space. A constellation of 28 spacecrafts (plus in-orbit spares) in sun synchronous orbits is proposed as a solution for improving the current space situational awareness capabilities. Each satellite uses an optical payload to track target RSOs, with the satellite's position precisely determined. Multiple pictures of the RSO are taken, and the spacecraft attitude used to calculate the target's position relative to the spacecraft. The target's orbit is then determined from the movement of the target through the field of view over time. The system outputs orbit state vectors of the tracked object, allowing precise orbit characterisation and collision forecasting to be delivered. The constellation's design allows high temporal resolution, so reliable information can be supplied to end-users. The paper shows the results of the system design of a demonstration mission meant to verify the feasibility of the concept, performed by a team of students of Cranfield University. The exercise addresses all the aspects of the preliminary design, including the definition of the mission and system requirements, the selection of the overall mission architecture, operations, and mission phases. A cap on the overall cost allows for the realisation of the platform within a university budget. The outline of the design includes not only the selection and sizing of all the subsystems and payload but also suggests a new strategy for deploying the constellation if the demonstration mission is successful. The utilisation of high TRL and COTS components, as well as mass, power, and link budgets, demonstrate the feasibility of the overall mission concept

    Mission ORCA: Orbit Refinement for Collision Avoidance

    Get PDF
    With new launches every year, and the use of 'mega-constellations' becoming commonplace, there is an increasing number of active satellites and other resident space objects (RSOs) in low Earth orbit. However, a collision between objects could be disastrous, having wide-ranging impacts on the collision orbit and all the satellites users within it. Collision forecasting currently has large degrees of uncertainty, causing satellite operators to often ignore collision warnings. It is therefore critical that a system becomes operational to track RSOs and determine the likelihood of collisions with greater accuracy than is currently available. The proposed solution uses a constellation of 28 spacecraft (plus in-orbit spares) in Sun Synchronous Orbits. CubeSats will be used to reduce the cost and the time required for the constellation to become operational. Each satellite uses an optical payload to track target RSOs, with the satellite's position precisely determined. Multiple pictures of the RSO are taken, and the spacecraft attitude used to calculate the target's position relative to the spacecraft. The target's orbit is then determined from the movement of the target through the field of view over time. The system outputs orbit state vectors of the tracked object, allowing precise orbit characterisation and collision forecasting to be delivered. The constellation's design allows high temporal resolution, so reliable information can be supplied to end-users. The paper shows the results of the system design of a demonstration mission meant to verify the feasibility of the concept, performed by a team of students of Cranfield University. The exercise addresses all the aspects of the preliminary design, including the definition of the mission and system requirements, the selection of the overall mission architecture, operations, and mission phases. A cap on the overall cost allows for the realisation of the platform within a university budget. The outline of the design includes not only the selection and sizing of all the subsystems and payload but also suggests a new strategy for deploying the constellation if the demonstration mission is successful. The utilisation of high TRL and COTS components, as well as mass, power, and link budgets, demonstrate the feasibility of the overall mission concep

    A crowdsourcing database for the copy-number variation of the Spanish population

    Get PDF
    Background: Despite being a very common type of genetic variation, the distribution of copy-number variations (CNVs) in the population is still poorly understood. The knowledge of the genetic variability, especially at the level of the local population, is a critical factor for distinguishing pathogenic from non-pathogenic variation in the discovery of new disease variants. Results: Here, we present the SPAnish Copy Number Alterations Collaborative Server (SPACNACS), which currently contains copy number variation profiles obtained from more than 400 genomes and exomes of unrelated Spanish individuals. By means of a collaborative crowdsourcing effort whole genome and whole exome sequencing data, produced by local genomic projects and for other purposes, is continuously collected. Once checked both, the Spanish ancestry and the lack of kinship with other individuals in the SPACNACS, the CNVs are inferred for these sequences and they are used to populate the database. A web interface allows querying the database with different filters that include ICD10 upper categories. This allows discarding samples from the disease under study and obtaining pseudo-control CNV profiles from the local population. We also show here additional studies on the local impact of CNVs in some phenotypes and on pharmacogenomic variants. SPACNACS can be accessed at: http://csvs.clinbioinfosspa.es/spacnacs/. Conclusion: SPACNACS facilitates disease gene discovery by providing detailed information of the local variability of the population and exemplifies how to reuse genomic data produced for other purposes to build a local reference database
    corecore