8,733 research outputs found
A New Method for Calculating Arrival Distribution of Ultra-High Energy Cosmic Rays above 10^19 eV with Modifications by the Galactic Magnetic Field
We present a new method for calculating arrival distribution of UHECRs
including modifications by the galactic magnetic field. We perform numerical
simulations of UHE anti-protons, which are injected isotropically at the earth,
in the Galaxy and record the directions of velocities at the earth and outside
the Galaxy for all of the trajectories. We then select some of them so that the
resultant mapping of the velocity directions outside the Galaxy of the selected
trajectories corresponds to a given source location scenario, applying
Liouville's theorem. We also consider energy loss processes of UHE protons in
the intergalactic space. Applying this method to our source location scenario
which is adopted in our recent study and can explain the AGASA observation
above 4 \times 10^{19} eV, we calculate the arrival distribution of UHECRs
including lower energy (E>10^19 eV) ones. We find that our source model can
reproduce the large-scale isotropy and the small-scale anisotropy on UHECR
arrival distribution above 10^19 eV observed by the AGASA. We also demonstrate
the UHECR arrival distribution above 10^19 eV with the event number expected by
future experiments in the next few years. The interesting feature of the
resultant arrival distribution is the arrangement of the clustered events in
the order of their energies, reflecting the directions of the galactic magnetic
field. This is also pointed out by Alvarez-Muniz et al.(2002). This feature
will allow us to obtain some kind of information about the composition of
UHECRs and the magnetic field with increasing amount of data.Comment: 10 pages, 8 figures, to appear in the Astrophysical Journa
Status of ANITA and ANITA-lite
We describe a new experiment to search for neutrinos with energies above 3 x
10^18 eV based on the observation of short duration radio pulses that are
emitted from neutrino-initiated cascades. The primary objective of the
ANtarctic Impulse Transient Antenna (ANITA) mission is to measure the flux of
Greisen-Zatsepin-Kuzmin (GZK) neutrinos and search for neutrinos from Active
Galactic Nuclei (AGN). We present first results obtained from the successful
launch of a 2-antenna prototype instrument (called ANITA-lite) that circled
Antarctica for 18 days during the 03/04 Antarctic campaign and show preliminary
results from attenuation length studies of electromagnetic waves at radio
frequencies in Antarctic ice. The ANITA detector is funded by NASA, and the
first flight is scheduled for December 2006.Comment: 9 pages, 8 figures, to be published in Proceedings of International
School of Cosmic Ray Astrophysics, 14th Course: "Neutrinos and Explosive
Events in the Universe", Erice, Italy, 2-13 July 200
Prospects for Lunar Satellite Detection of Radio Pulses from Ultrahigh Energy Neutrinos Interacting with the Moon
The Moon provides a huge effective detector volume for ultrahigh energy
cosmic neutrinos, which generate coherent radio pulses in the lunar surface
layer due to the Askaryan effect. In light of presently considered lunar
missions, we propose radio measurements from a Moon-orbiting satellite. First
systematic Monte Carlo simulations demonstrate the detectability of Askaryan
pulses from neutrinos with energies above 10^{20} eV, i.e. near and above the
interesting GZK limit, at the very low fluxes predicted in different scenarios.Comment: RevTeX (4 pages, 2 figures). v2 includes updated results and extended
discussio
Measuring High Energy Neutrino-Nucleon Cross Sections With Future Neutrino Telescopes
Next generation kilometer-scale neutrino telescopes, such as ICECUBE, can
test standard model predictions for neutrino-nucleon cross sections at energies
well beyond the reach of collider experiments. At energies near a PeV and
higher, the Earth becomes opaque to neutrinos. At these energies, the ratio of
upgoing and downgoing events can be used to measure the total neutrino-nucleon
cross section given the presence of an adequate high energy neutrino flux.Comment: 4 pages, 5 figure
First Experimental Characterization of Microwave Emission from Cosmic Ray Air Showers
We report the first direct measurement of the overall characteristics of
microwave radio emission from extensive air showers. Using a trigger provided
by the KASCADE-Grande air shower array, the signals of the microwave antennas
of the CROME (Cosmic-Ray Observation via Microwave Emission) experiment have
been read out and searched for signatures of radio emission by high-energy air
showers in the GHz frequency range. Microwave signals have been detected for
more than 30 showers with energies above 3*10^16 eV. The observations presented
in this Letter are consistent with a mainly forward-directed and polarised
emission process in the GHz frequency range. The measurements show that
microwave radiation offers a new means of studying air showers at energies
above 10^17 eV.Comment: Accepted for publication in PR
UHE neutrino searches using a Lunar target: First Results from the RESUN search
During the past decade there have been several attempts to detect cosmogenic
ultra high energy (UHE) neutrinos by searching for radio Cerenkov bursts
resulting from charged impact showers in terrestrial ice or the lunar regolith.
So far these radio searches have yielded no detections, but the inferred flux
upper limits have started to constrain physical models for UHE neutrino
generation. For searches which use the Moon as a target, we summarize the
physics of the interaction, properties of the resulting Cerenkov radio pulse,
detection statistics, effective aperture scaling laws, and derivation of upper
limits for isotropic and point source models. We report on initial results from
the RESUN search, which uses the Expanded Very Large Array configured in
multiple sub-arrays of four antennas at 1.45 GHz pointing along the lunar limb.
We detected no pulses of lunar origin during 45 observing hours. This implies
upper limits to the differential neutrino flux E^2 dN/dE < 0.003 EeV km^{-2}
s^{-1} sr^{-1} and < 0.0003 EeV km$^{-2} s^{-1} at 90% confidence level for
isotropic and sampled point sources respectively, in the neutrino energy range
10^{21.6} < E(eV) < 10^{22.6}. The isotropic flux limit is comparable to the
lowest published upper limits for lunar searches. The full RESUN search, with
an additional 200 hours observing time and an improved data acquisition scheme,
will be be an order of magnitude more sensitive in the energy range 10^{21} <
E(eV) < 10^{22} than previous lunar-target searches, and will test Z burst
models of neutrino generation.Comment: 26 pages, 14 figure
Simulation of Cosmic Ray neutrinos Interactions in Water
The program CORSIKA, usually used to simulate extensive cosmic ray air
showers, has been adapted to a water medium in order to study the acoustic
detection of ultra high energy neutrinos. Showers in water from incident
protons and from neutrinos have been generated and their properties are
described. The results obtained from CORSIKA are compared to those from other
available simulation programs such as Geant4.Comment: Talk presented on behalf of the ACoRNE Collaboration at the ARENA
Workshop 200
- …