223 research outputs found
Linear polarization Yb<sup>3+</sup>-doped fiber laser with novel innerclad structures
Results on high radiance Yb3+-doped fiber lasers with novel double innerclad structures (double-D clad and four hole) and polarized output at â1090 nm are presented. We have demonstrated >40% of the total output power being polarized, making the fiber laser suitable for LIDAR and second-harmonic generation (SHG) applications. It also showed a 10-nm tuning range with low (less than 10 mW) average power variations. The narrow linewidth source was pumped with a low cost, low brightness laser diode, and exhibited a relatively low slope efficiency, which gives room for improvement by using a 976-nm pump source where Yb3+ has a narrower linewidth and at least five times higher absorption
A Survey on Quality of Service in the Voice Over IP Technology
Voice services can be transmitted by circuit switched and packet switched networks (Internet). Voice over Internet Protocol (VoIP) is one of the most attractive and important service in telecommunication networks, current implementations of VoIP have two main types of architectures, which are based on H.323 and Session Initiation Protocol (SIP). However, when the voice traffic is transported over Internet, the packet based transmission may introduce impairments and it has influence on the Quality of Service (QoS) perceived by the end users. The voice quality of VoIP systems depends on many QoS parameters. Particularly, One Way Delay (OWD), jitter and Packet Loss Rate (PLR) have an important impact on voice quality. This survey presents the main concepts relating to the VoIP technology and quality of service issues
Thermal Diffusion and Specular Reflection, Monte Carlo-based Study on Human Skin via Pulsed Fiber Laser Energy
The aim of traditional Chinese medicine (TCM) in acupuncture is sometimes to restore and regulate energy balance by stimulating specific points along the specific meridians traced on the human body via different techniques such as mechanical pressure, moxibustion and others. Hence, physicians have struggled to improve treatment for common diseases such as migraine and headaches. Heat stimulation and some pharmacological effects from moxa have been attributed to the therapeutic efficacy of such techniques. As heat can diffuse through the tissue, skins temperature will rise in the surrounding tissue. In this work, heat diffusion on a simple, 5-layer model of human skin is presented. Based on this, and by using Monte Carlo techniques, a photon or a photon package is launched into the tissue for mimicking the propagation of such photons at two different wavelengths through the tissue. The method generally describes the scholastic nature of radiation interactions. Most of the laser energy is deposited within a volume which cross-sectional area is the size of the beam itself. As could be seen, in the epidermis layer of the model, the heat does not go deep and nearly all the heat diffusion occurs on the edges of the beam, causing losses. Heat dissipation occurs faster and goes down to 2°C in the adipose tissue since there is low water content in this region. On the contrary, there is a fast heat increase in the muscle layer, up to 6°C at the most superficial layer. Since melanin is the most important epidermal chromophore, it can be noted that light shows strong absorption via melanin, at 690nm laser wavelength. In the papillary dermis the heat decreases and spreads out to the surrounding tissue. Once it reaches the adipose tissue, the heat is not absorbed enough; therefore, it is transmitted into the muscle, where the temperature rise is higher and reaches nearly 40 °C. Finally, photodynamics in a simple 5-layer skin model were explored at two laser wavelengths: 690nm and 1069nm, where no thermal damage would be expected, given the energy level of the employed pulses. Such pulsed laser energy levels remain to be tested in living tissue
Plasma-based optical fiber tapering rig
Optical fiber tapers have been widely proposed and demonstrated as reliable optical fiber structures for sensing, lasers, and supercontinuum generation applications. This paper proposes an innovative approach to fabricating optical fiber tapers using plasma as the heat source. From our literature review, and to the best of our knowledge, this is the first time that plasma has been used as the heat source for producing optical fiber tapers. The system is not intricate and simple to replicate. Moreover, the elements involved make this machine attractive to research groups devoted to optical fibers. The setup consistently generates robust biconical optical fiber tapers. A typical waist of âŒ8 ÎŒm and taper lengths ranging from 3 to 15 mm are achieved. Our results showed tapers with interference fringes up to 12 dB, from 1465 nm to 1599 nm. Furthermore, the statistical evaluation presented demonstrates a good level of reproducibility in our tapering process.</p
Evidence for a mixed mass composition at the `ankle' in the cosmic-ray spectrum
We report a first measurement for ultra-high energy cosmic rays of the
correlation between the depth of shower maximum and the signal in the water
Cherenkov stations of air-showers registered simultaneously by the fluorescence
and the surface detectors of the Pierre Auger Observatory. Such a correlation
measurement is a unique feature of a hybrid air-shower observatory with
sensitivity to both the electromagnetic and muonic components. It allows an
accurate determination of the spread of primary masses in the cosmic-ray flux.
Up till now, constraints on the spread of primary masses have been dominated by
systematic uncertainties. The present correlation measurement is not affected
by systematics in the measurement of the depth of shower maximum or the signal
in the water Cherenkov stations. The analysis relies on general characteristics
of air showers and is thus robust also with respect to uncertainties in
hadronic event generators. The observed correlation in the energy range around
the `ankle' at differs significantly from
expectations for pure primary cosmic-ray compositions. A light composition made
up of proton and helium only is equally inconsistent with observations. The
data are explained well by a mixed composition including nuclei with mass . Scenarios such as the proton dip model, with almost pure compositions, are
thus disfavoured as the sole explanation of the ultrahigh-energy cosmic-ray
flux at Earth.Comment: Published version. Added journal reference and DOI. Added Report
Numbe
Search for direct production of charginos and neutralinos in events with three leptons and missing transverse momentum in âs = 7 TeV pp collisions with the ATLAS detector
A search for the direct production of charginos and neutralinos in final states with three electrons or muons and missing transverse momentum is presented. The analysis is based on 4.7 fbâ1 of protonâproton collision data delivered by the Large Hadron Collider and recorded with the ATLAS detector. Observations are consistent with Standard Model expectations in three signal regions that are either depleted or enriched in Z-boson decays. Upper limits at 95% confidence level are set in R-parity conserving phenomenological minimal supersymmetric models and in simplified models, significantly extending previous results
Jet size dependence of single jet suppression in lead-lead collisions at sqrt(s(NN)) = 2.76 TeV with the ATLAS detector at the LHC
Measurements of inclusive jet suppression in heavy ion collisions at the LHC
provide direct sensitivity to the physics of jet quenching. In a sample of
lead-lead collisions at sqrt(s) = 2.76 TeV corresponding to an integrated
luminosity of approximately 7 inverse microbarns, ATLAS has measured jets with
a calorimeter over the pseudorapidity interval |eta| < 2.1 and over the
transverse momentum range 38 < pT < 210 GeV. Jets were reconstructed using the
anti-kt algorithm with values for the distance parameter that determines the
nominal jet radius of R = 0.2, 0.3, 0.4 and 0.5. The centrality dependence of
the jet yield is characterized by the jet "central-to-peripheral ratio," Rcp.
Jet production is found to be suppressed by approximately a factor of two in
the 10% most central collisions relative to peripheral collisions. Rcp varies
smoothly with centrality as characterized by the number of participating
nucleons. The observed suppression is only weakly dependent on jet radius and
transverse momentum. These results provide the first direct measurement of
inclusive jet suppression in heavy ion collisions and complement previous
measurements of dijet transverse energy imbalance at the LHC.Comment: 15 pages plus author list (30 pages total), 8 figures, 2 tables,
submitted to Physics Letters B. All figures including auxiliary figures are
available at
http://atlas.web.cern.ch/Atlas/GROUPS/PHYSICS/PAPERS/HION-2011-02
- âŠ