19,024 research outputs found

    Unimodular Trees versus Einstein Trees

    Get PDF
    The maximally helicity violating (MHV) tree level scattering amplitudes involving three, four or five gravitons are worked out in Unimodular Gravity. They are found to coincide with the corresponding amplitudes in General Relativity. This a remarkable result, insofar as both the propagators and the vertices are quite different in both theories.Comment: 20 pages, 5 figure

    Main Memory Adaptive Indexing for Multi-core Systems

    Full text link
    Adaptive indexing is a concept that considers index creation in databases as a by-product of query processing; as opposed to traditional full index creation where the indexing effort is performed up front before answering any queries. Adaptive indexing has received a considerable amount of attention, and several algorithms have been proposed over the past few years; including a recent experimental study comparing a large number of existing methods. Until now, however, most adaptive indexing algorithms have been designed single-threaded, yet with multi-core systems already well established, the idea of designing parallel algorithms for adaptive indexing is very natural. In this regard only one parallel algorithm for adaptive indexing has recently appeared in the literature: The parallel version of standard cracking. In this paper we describe three alternative parallel algorithms for adaptive indexing, including a second variant of a parallel standard cracking algorithm. Additionally, we describe a hybrid parallel sorting algorithm, and a NUMA-aware method based on sorting. We then thoroughly compare all these algorithms experimentally; along a variant of a recently published parallel version of radix sort. Parallel sorting algorithms serve as a realistic baseline for multi-threaded adaptive indexing techniques. In total we experimentally compare seven parallel algorithms. Additionally, we extensively profile all considered algorithms. The initial set of experiments considered in this paper indicates that our parallel algorithms significantly improve over previously known ones. Our results suggest that, although adaptive indexing algorithms are a good design choice in single-threaded environments, the rules change considerably in the parallel case. That is, in future highly-parallel environments, sorting algorithms could be serious alternatives to adaptive indexing.Comment: 26 pages, 7 figure

    A stochastic individual based model for the growth of a stand of Japanese knotweed including mowing as a management technique

    Full text link
    Invasive alien species are a growing threat for environment and health. They also have a major economic impact, as they can damage many infrastructures. The Japanese knotweed (Fallopia japonica), present in North America, Northern and Central Europe as well as in Australia and New Zealand, is listed by the World Conservation Union as one of the world's worst invasive species. So far, most models have dealt with how the invasion spreads without management. This paper aims at providing a model able to study and predict the dynamics of a stand of Japanese knotweed taking into account mowing as a management technique. The model we propose is stochastic and individual-based, which allows us taking into account the behaviour of individuals depending on their size and location, as well as individual stochasticity. We set plant dynamics parameters thanks to a calibration with field data, and study the influence of the initial population size, the mean number of mowing events a year and the management project duration on mean area and mean number of crowns of stands. In particular, our results provide the sets of parameters for which it is possible to obtain the stand eradication, and the minimal duration of the management project necessary to achieve this latter
    corecore