6 research outputs found
DHT-based functionalities using hypercubes
Decoupling the permanent identifi er of a node from the node's topology-dependent address is a promising approach toward completely scalable self-organizing networks. Existing solutions use a logical tree-like structure that, although allowing for simple address assignment and management, lead to low route selection flexibility. This clearly results in low routing performance and poor resilience to failures. In this paper, we propose to increase the number of candidate paths by using incomplete hypercubes. We will see that this solution can cover a wide range of applications by adapting to the dynamics of the network1st IFIP International Conference on Ad-Hoc NetWorkingRed de Universidades con Carreras en Informática (RedUNCI
DHT-based functionalities using hypercubes
Decoupling the permanent identifi er of a node from the node's topology-dependent address is a promising approach toward completely scalable self-organizing networks. Existing solutions use a logical tree-like structure that, although allowing for simple address assignment and management, lead to low route selection flexibility. This clearly results in low routing performance and poor resilience to failures. In this paper, we propose to increase the number of candidate paths by using incomplete hypercubes. We will see that this solution can cover a wide range of applications by adapting to the dynamics of the network1st IFIP International Conference on Ad-Hoc NetWorkingRed de Universidades con Carreras en Informática (RedUNCI
Social Events in a Time-Varying Mobile Phone Graph
The large-scale study of human mobility has been significantly enhanced over the last decade by the massive use of mobile phones in urban populations. Studying the activity of mobile phones allows us, not only to infer social networks between individuals, but also to observe the movements of these individuals in space and time. In this work, we investigate how these two related sources of information can be integrated within the context of detecting and analyzing large social events. We show that large social events can be characterized not only by an anomalous increase in activity of the antennas in the neighborhood of the event, but also by an increase in social relationships of the attendants present in the event. Moreover, having detected a large social event via increased antenna activity, we can use the network connections to infer whether an unobserved user was present at the event. More precisely, we address the following three challenges: (i) automatically detecting large social events via increased antenna activity; (ii) characterizing the social cohesion of the detected event; and (iii) analyzing the feasibility of inferring whether unobserved users were in the event.Sociedad Argentina de Informática e Investigación Operativa (SADIO
Social Events in a Time-Varying Mobile Phone Graph
The large-scale study of human mobility has been significantly enhanced over the last decade by the massive use of mobile phones in urban populations. Studying the activity of mobile phones allows us, not only to infer social networks between individuals, but also to observe the movements of these individuals in space and time. In this work, we investigate how these two related sources of information can be integrated within the context of detecting and analyzing large social events. We show that large social events can be characterized not only by an anomalous increase in activity of the antennas in the neighborhood of the event, but also by an increase in social relationships of the attendants present in the event. Moreover, having detected a large social event via increased antenna activity, we can use the network connections to infer whether an unobserved user was present at the event. More precisely, we address the following three challenges: (i) automatically detecting large social events via increased antenna activity; (ii) characterizing the social cohesion of the detected event; and (iii) analyzing the feasibility of inferring whether unobserved users were in the event.Sociedad Argentina de Informática e Investigación Operativa (SADIO
Social Events in a Time-Varying Mobile Phone Graph
The large-scale study of human mobility has been significantly enhanced over the last decade by the massive use of mobile phones in urban populations. Studying the activity of mobile phones allows us, not only to infer social networks between individuals, but also to observe the movements of these individuals in space and time. In this work, we investigate how these two related sources of information can be integrated within the context of detecting and analyzing large social events. We show that large social events can be characterized not only by an anomalous increase in activity of the antennas in the neighborhood of the event, but also by an increase in social relationships of the attendants present in the event. Moreover, having detected a large social event via increased antenna activity, we can use the network connections to infer whether an unobserved user was present at the event. More precisely, we address the following three challenges: (i) automatically detecting large social events via increased antenna activity; (ii) characterizing the social cohesion of the detected event; and (iii) analyzing the feasibility of inferring whether unobserved users were in the event.Sociedad Argentina de Informática e Investigación Operativa (SADIO