38,891 research outputs found
Observational Constraints on Transverse Gravity: a Generalization of Unimodular Gravity
We explore the hypothesis that the set of symmetries enjoyed by the theory
that describes gravity is not the full group of diffeomorphisms Diff(M), as in
General Relativity, but a maximal subgroup of it, TransverseDiff(M), with its
elements having a jacobian equal to unity; at the infinitesimal level, the
parameter describing the coordinate change, xi^mu (x), is transverse, i.e.,
partial_mu(xi^mu)=0. Incidentally, this is the smaller symmetry one needs to
propagate consistently a graviton, which is a great theoretical motivation for
considering these theories. Also, the determinant of the metric, g, behaves as
a "transverse scalar", so that these theories can be seen as a generalization
of the better-known unimodular gravity. We present our results on the
observational constraints on transverse gravity, in close relation with the
claim of equivalence with general scalar-tensor theory. We also comment on the
structure of the divergences of the quantum theory to the one-loop order.Comment: Prepared for the First Mediterranean Conference on Classical and
Quantum Gravity, MCCQG, Kolymbari (Crete, Greece), 14-18 September, 2009;
also, ERE2009: Gravitation in the Large, Bilbao (Spain), 7-11 September, 200
Superconducting Puddles and "Colossal'' Effects in Underdoped Cuprates
Phenomenological models for the antiferromagnetic (AF) vs. d-wave
superconductivity competition in cuprates are studied using conventional Monte
Carlo techniques. The analysis suggests that cuprates may show a variety of
different behaviors in the very underdoped regime: local coexistence or
first-order transitions among the competing orders, stripes, or glassy states
with nanoscale superconducting (SC) puddles. The transition from AF to SC does
not seem universal. In particular, the glassy state leads to the possibility of
"colossal'' effects in some cuprates, analog of those in manganites. Under
suitable conditions, non-superconducting Cu-oxides could rapidly become
superconducting by the influence of weak perturbations that align the randomly
oriented phases of the SC puddles in the mixed state. Consequences of these
ideas for thin-film and photoemission experiments are discussed.Comment: RevTeX 4, revised expanded version, 8 pages, 8 figure
Phase Fluctuations in Strongly Coupled -Wave Superconductors
We present a numerically exact solution for the BCS Hamiltonian at any
temperature, including the degrees of freedom associated with classical phase,
as well as amplitude, fluctuations via a Monte Carlo (MC) integration. This
allows for an investigation over the whole range of couplings: from weak
attraction, as in the well-known BCS limit, to the mainly unexplored
strong-coupling regime of pronounced phase fluctuations. In the latter, for the
first time two characteristic temperatures and , associated with
short- and long-range ordering, respectively, can easily be identified in a
mean-field-motivated Hamiltonian. at the same time corresponds to the
opening of a gap in the excitation spectrum. Besides introducing a novel
procedure to study strongly coupled d-wave superconductors, our results
indicate that classical phase fluctuations are not sufficient to explain the
pseudo-gap features of high-temperature superconductors (HTS).Comment: 5 pages, 3 figure
Quantum Artificial Life in an IBM Quantum Computer
We present the first experimental realization of a quantum artificial life
algorithm in a quantum computer. The quantum biomimetic protocol encodes
tailored quantum behaviors belonging to living systems, namely,
self-replication, mutation, interaction between individuals, and death, into
the cloud quantum computer IBM ibmqx4. In this experiment, entanglement spreads
throughout generations of individuals, where genuine quantum information
features are inherited through genealogical networks. As a pioneering
proof-of-principle, experimental data fits the ideal model with accuracy.
Thereafter, these and other models of quantum artificial life, for which no
classical device may predict its quantum supremacy evolution, can be further
explored in novel generations of quantum computers. Quantum biomimetics,
quantum machine learning, and quantum artificial intelligence will move forward
hand in hand through more elaborate levels of quantum complexity
A Renormalization Group Analysis of the NCG constraints m_{top} = 2\,m_W},
We study the evolution under the renormalization group of the restrictions on
the parameters of the standard model coming from Non-Commutative Geometry,
namely and . We adopt the point of
view that these relations are to be interpreted as {\it tree level} constraints
and, as such, can be implemented in a mass independent renormalization scheme
only at a given energy scale . We show that the physical predictions on
the top and Higgs masses depend weakly on .Comment: 7 pages, FTUAM-94/2, uses harvma
- …