20 research outputs found

    High-Resolution Radiometer for Remote Sensing of Solar Flare Activity from Low Earth Orbit Satellites

    Get PDF
    This article has been withdrawn at the request of the author(s) and/or editor. The Publisher apologizes for any inconvenience this may cause.For this Article Withdrawal Statement, please click on: https://ojs.bilpublishing.com/index.php/jasr/article/view/621Abstract: Solar flares, intense bursts of radiation, can disrupt the atmosphere and potentially affect communication, navigation and electrical systems. A newly developed miniaturised microwave radiometer used on a space-borne platform should offer astronomers unprecedented understanding of the largest explosive phenomena in our solar system. In this paper the activity and results of the EU funded research project FLARES are presented. Objective of FLARES has been the study, analysis and design of millimetre-wave (mm-wave) system-on-chip (SoC) radiometer for space-borne detection of solar flares. The proposed approach has contributed to reduce significantly the power consumption and weight with respect to the existing instruments for the observation and study of solar flares. In particular, the proposed SoC Dicke radiometer can achieve one order of magnitude improvement in terms of resolution, so allowing the detection of solar flares with relatively low intensity, i.e. about 100 times lower than those currently detected by the existing systems, owing to space-borne operations and the microchip-level miniaturization through silicon technology under space qualification

    An easy 3D printing approach to manufacture vertical diffusion cells for in vitro release and permeation studies

    Get PDF
    Vertical diffusion cells are commonly used in the pharmaceutical and cosmetic fields to study the release and permeation of active ingredients through synthetic or biological membranes. Nevertheless, the commercially available glass-based systems are expensive and need to be carefully handled due to their fragility. Fused deposition modeling 3D printing is an additive manufacturing technique that allows producing objects layer by layer using different thermoplastic materials. Among them, polypropylene is a robust, flexible, and chemically inert polymer that can resist to many organic solvents. In this work, we designed and printed a vertical diffusion cell following pharmacopeia requirements by using polypropylene in a fused deposition modeling 3D printer. To keep the system thermostated, the developed model fits in a heating block to avoid the use of water recirculating system. The vertical diffusion cells were leak-free and presented chemical resistance and no interaction with model molecules (i.e., caffeine, diclofenac sodium, and glycyrrhetinic acid). The 3D printed cells were compared to commercially available glass cells and then two different types of synthetic membranes (i.e., PDMS and Strat-M®) were used to evaluate the permeation of a caffeine hydrogel. The developed 3D printed testing system could represent an efficient alternative to the glass-based equipment

    Poly(3-hydroxybutyrate): A potential biodegradable excipient for direct 3D printing of pharmaceuticals

    Get PDF
    During the past decades, 3D printing has revolutionised different areas of research. Despite the considerable progress achieved in 3D printing of pharmaceuticals, the limited choice of suitable materials remains a challenge to overcome. The growing search for sustainable excipients has led to an increasing interest in biopolymers. Poly(3-hydroxybutyrate) (PHB) is a biocompatible and biodegradable biopolymer obtained from bacteria that could be efficiently employed in the pharmaceutical field. Here we aimed to demonstrate its potential application as a thermoplastic material for personalised medicine through 3D printing. More specifically, we processed PHB by using direct powder extrusion, a one-step additive manufacturing technique. To assess and denote the feasibility and versatility of the process, a 3D square model was manufactured in different dimensions (sidexheight: 12x2 mm; 18x2 mm; 24x2 mm) and loaded with increasing percentages of a model drug (up to 30% w/w). The manufacturing process was influenced by the drug content, and indeed, an increase in the amount of the drug determined a reduction in the printing temperature, without affecting the other parameters (such as the layer height). The composition of the model squares was investigated using Fourier-transform infrared spectroscopy, the resulting spectra confirmed that the starting materials were successfully incorporated into the final formulations. The thermal behaviour of the printed systems was characterized by differential scanning calorimetry, and thermal gravimetric analysis. Moreover, the sustained drug release profile of the formulations was performed over 21 days and showed to be dependent on the dimensions of the printed object and on the amount of loaded drug. Indeed, the formulation with 30% w/w in the dimension 24x2 mm released the highest amount of drug. Hence, the results suggested that PHB and direct powder extrusion technique could be promising tools for the manufacturing of prolonged release and personalised drug delivery forms

    International Union of Angiology (IUA) consensus paper on imaging strategies in atherosclerotic carotid artery imaging: From basic strategies to advanced approaches

    Get PDF
    Cardiovascular disease (CVD) is the leading cause of mortality and disability in developed countries. According to WHO, an estimated 17.9 million people died from CVDs in 2019, representing 32% of all global deaths. Of these deaths, 85% were due to major adverse cardiac and cerebral events. Early detection and care for individuals at high risk could save lives, alleviate suffering, and diminish economic burden associated with these diseases. Carotid artery disease is not only a well-established risk factor for ischemic stroke, contributing to 10%–20% of strokes or transient ischemic attacks (TIAs), but it is also a surrogate marker of generalized atherosclerosis and a predictor of cardiovascular events. In addition to diligent history, physical examination, and laboratory detection of metabolic abnormalities leading to vascular changes, imaging of carotid arteries adds very important information in assessing stroke and overall cardiovascular risk. Spanning from carotid intima-media thickness (IMT) measurements in arteriopathy to plaque burden, morphology and biology in more advanced disease, imaging of carotid arteries could help not only in stroke prevention but also in ameliorating cardiovascular events in other territories (e.g. in the coronary arteries). While ultrasound is the most widely available and affordable imaging methods, computed tomography (CT), magnetic resonance imaging (MRI), positron emission tomography (PET), their combination and other more sophisticated methods have introduced novel concepts in detection of carotid plaque characteristics and risk assessment of stroke and other cardiovascular events. However, in addition to robust progress in usage of these methods, all of them have limitations which should be taken into account. The main purpose of this consensus document is to discuss pros but also cons in clinical, epidemiological and research use of all these techniques

    Multifunctional cotton fabrics

    No full text
    Electrically conductive fabrics were produced by deposition of a thin film of doped polypyrrole on the surface of cotton fibres. In situ oxidative chemical polymerisation were carried out in aqueous solutions of pyrrole, oxidant and doping agents, at room temperature. Polypyrrole-coated fibres were characterized by Light Microscopy, SEM, EDX, FTIR and TGA. Moreover, fabric samples were also evaluated for moisture regain, electrical resistivity, heat generation and antibacterial activity. PPy alters the combustion process of cellulose fibres that maintain the fibrous shape after heating in air. Moreover, it seems that PPy is really an antibacterial agent, apart from the oxidant or dopant used. The results highlight potential applications as technical textiles with antistatic (low electrical resistance), heat generation, hygroscopy, antibacterial and high temperature resistance properties

    K-Band SiGe System-on-Chip Radiometric Receiver for Remote Sensing of the Atmosphere

    No full text

    Chip-to-package Wireless Power Transfer and its Application to mm-Wave Antennas and Monolithic Radiometric Receivers

    No full text
    Abstract — A chip-to-package wireless power transfer concept is applied to MMIC and antennas on LCP substrate is presented. Electromagnetic simulations show the feasibility of the proposed approach. As a benchmarking topology at the working frequency of 35.4 GHz, an Archimedean spiral antenna matched to a heterogeneous transformer, which couples the power received by the antenna to the chip, has been simulated. Transistor level circuit simulations are also proposed for the LNA and the detector, which together will constitute the system-on-chip (SoC) radiometer to be integrated in the LCP-SoP. Index Terms — Electromagnetic coupling, flexible electronics, heterogeneous integration, SoC, SoP, LNA, imaging, mm-wave

    3D-printed EVA-based patches manufactured by direct powder extrusion for personalized transdermal therapies

    No full text
    In recent years, 3D printing has attracted great interest in the pharmaceutical field as a promising tool for the on-demand manufacturing of patient-centered pharmaceutical forms. Among the existing 3D printing techniques, direct powder extrusion (DPE) resulted as the most practical approach thanks to the possibility to directly process excipients and drugs in a single step. The main goal of this work was to determine whether different grades of ethylene vinyl acetate (EVA) copolymer might be employed as new feedstock materials for the DPE technique to manufacture transdermal patches. By selecting two model drugs with different thermal behavior, (i.e., ibuprofen and diclofenac sodium) we also wanted to pay attention to the versatility of EVA excipient in preparing patches for customized transdermal therapies. EVA was combined with 30% (w/w) of each model drugs. The physicochemical composition of the printed devices was investigated through Fourier-transform infrared spectroscopy, differential scanning calorimetry, and thermogravimetric analyses. FT-IR spectra confirmed that the starting materials were effectively incorporated into the final formulation, and thermal analyses demonstrated that the extrusion process altered the crystalline morphology of the raw polymers inducing the formation of crystals at lower thicknesses. Lastly, the drug release and permeation profile of the printed systems was evaluated for 48 hours and showed to be dependent on the VA content of the EVA grade (74.5% of ibuprofen released from EVA 4030AC matrix and 12.6% of diclofenac sodium released from EVA1821A matrix). Hence, this study demonstrated that EVA and direct powder extrusion technique could be promising tools for manufacturing transdermal patches. By selecting the EVA grade with the appropriate VA content, drugs with dissimilar melting points could be printed preserving their thermal stability. Moreover, the desired drug release and permeation profile of the drug can be achieved, representing an important advantage in terms of personalized medicine
    corecore