10 research outputs found

    Low-temperature Fischer-Tropsch synthesis for production of synthetic fuels using nanometric carbon-supported iron and cobalt catalysts

    Get PDF
    Ce travail met en Ă©vidence le potentiel que la technologie des plasmas prĂ©sente dans l’élaboration, en une seule Ă©tape, des catalyseurs de la synthĂšse Fischer-Tropsch (SFT), alors que les mĂ©thodes habituelles ou conventionnelles comme l’imprĂ©gnation et la prĂ©cipitation sont des voies de production multi-Ă©tapes du matĂ©riau catalytique. Les nouveaux catalyseurs ont Ă©tĂ© mis en Ɠuvre Ă  partir d’espĂšces monomĂ©talliques ayant comme support le carbone (Fe/C, Co/C) pour dĂ©velopper des bimĂ©talliques (Co-Fe), des ternaires (Mo-Co-Fe, Ni-Co-Fe) qui ont Ă©tĂ© ensuite formulĂ©s avec la prĂ©sence de promoteurs (Au/Ni-Co-Fe). Du fait que la prĂ©paration par plasma thermique de ces catalyseurs nanomĂ©triques supportĂ©s par le carbone soit relativement rĂ©cente, cela permet d’envisager des perspectives d’applications avec des retombĂ©es industrielles, car les hautes tempĂ©ratures caractĂ©ristiques des plasmas permettent de gĂ©nĂ©rer des carbures de fer (Fe3C, Fe5C2) trĂšs importants dans le processus catalytique de SFT. Des efforts de quantification de toutes les phases de carbures ont Ă©tĂ© effectuĂ©s Ă  l’aide de la diffraction des rayons X (DRX), tandis que l’analyse quantitative Ă  l’aide du Rietveld (AQR) n’a Ă©tĂ© que partiellement concluante Ă  cause de la taille nanomĂ©trique des matĂ©riaux Ă©tudiĂ©s qui est en dessous des limites de dĂ©tection instrumental. Avec des aires spĂ©cifiques de BET comprises entre 35 et 93 m2.g-1, les catalyseurs sont typiques de matĂ©riaux poreux et prĂ©sentent ainsi un avantage pour la SFT car les transformations rĂ©actionnelles ne sont pas limitĂ©es par les phĂ©nomĂšnes de transfert de masse. La microscopie Ă©lectronique Ă  transmission (MET) et la microscopie Ă©lectronique Ă  balayage (MEB) couplĂ©es avec la Spectroscopie Ă  rayons X Ă  dispersion d'Ă©nergie (EDX) et la cartographie des rayons X (cartographie X) ont montrĂ© une grande dispersion des particules mĂ©talliques dans la matrice de carbone, indiquant ainsi l’absence d’agglomĂ©ration sur les Ă©chantillons frais et post rĂ©actionnels. Les caractĂ©risations par la spectroscopie Raman et la Spectroscopie photoĂ©lectronique par rayon X (XPS) ont mis en Ă©vidence un support de catalyseur essentiellement graphitique. Les analyses par la spectroscopie d’absorption des rayons X (SAX), par la spectroscopie de structure prĂšs du front d’absorption des rayons X (XANES) ont confirmĂ© que le catalyseur Co/C obtenu par plasma contenait des carbures (Co3C) qui n’ont pu ĂȘtre rĂ©vĂ©lĂ©s par XPS. Le test catalytique initial a Ă©tĂ© effectuĂ© en rĂ©acteur Ă  lit fixe Ă  503 K (230°C), sous une pression de 3 MPa avec une vitesse volumique spatiale (VVH) de 6 000 〖cm〗^3 〖.h〗^(-1).g^(-1), pour une durĂ©e de 24 heures. Par la suite, les tests ont Ă©tĂ© performĂ©s dans un rĂ©acteur triphasique agitĂ© continu (3-φ-CSTSR) opĂ©rant de façon isotherme pendant 24 heures Ă  des tempĂ©ratures de 493–533 K (220–260°C), sous 2 MPa et Ă  VVH = 3 600 〖 cm〗^3 〖.h〗^(-1).g^(-1). Tous les catalyseurs Ă©tudiĂ©s ont Ă©tĂ© actifs pour la SFT, produisant des fractions de gasoline (essence) et de diesel mais avec des sĂ©lectivitĂ©s qui dĂ©pendaient de la proportion de mĂ©tal prĂ©sent dans le catalyseur et des conditions rĂ©actionnelles. À 493 K, le catalyseur le plus actif a Ă©tĂ© Co/C, obtenu par plasma, avec 40% de conversion qui contraste avec les 32% du meilleur catalyseur commercial Fe/C. Ces performances ont Ă©tĂ© comparĂ©es avec celles d’autres catalyseurs synthĂ©tisĂ©s par plasma Fe/C (25% de conversion) et 80%Co-20%Fe/C (10%), tandis que 50%Co-50%Fe/C, 30%Co-70%Fe/C n’ont montrĂ© aucune activitĂ©. Le catalyseur Co/C a Ă©tĂ© aussi le plus sĂ©lectif pour la formation de gasoline; mais Ă  533 K il a gĂ©nĂ©rĂ© des quantitĂ©s excessives de CH4 (46%) et CO2 (19%); ce qui a conduit Ă  l’idĂ©e de synthĂ©tiser des bimĂ©talliques Co-Fe/C qui ont permis d’abaisser la sĂ©lectivitĂ© en CH4 ou CO2 en dessous de 10%, pour une conversion de CO dĂ©passant 40%. De mĂȘme, les catalyseurs contenant du Ni (Ni-Co-Fe/C) ont Ă©tĂ© plus actifs avec des conversions de CO dĂ©passant 50% avec des sĂ©lectivitĂ©s en gasoline (38%) plus Ă©levĂ©es qu’en diesel (20%). Ce catalyseur bimĂ©tallique a aussi favorisĂ© la formation importante de CH4 (23%) et de CO2 (14%) beaucoup plus que dans le cas du solide Co-Fe/C. Globalement, le catalyseur bimĂ©tallique Co-Fe et sa variante acidifiĂ©e (exemple Mo-Co-Fe) ont Ă©tĂ© plus sĂ©lectifs en diesel (~ 55%). L’influence du prĂ©traitement a Ă©tĂ© examinĂ©e et, selon la composition des catalyseurs, ceux qui ont Ă©tĂ© initialement rĂ©duits par CO avaient montrĂ© une amĂ©lioration de la sĂ©lectivitĂ© en diesel (50–67%); ces performances se sont avĂ©rĂ©es meilleures par rapport Ă  celles des solides initialement rĂ©duits par H2 (45–55%). En outre, les catalyseurs aux concentrations Ă©levĂ©es en cobalt, ainsi que ceux prĂ©traitĂ©s sous hydrogĂšne ont gĂ©nĂ©rĂ© plus d’eau que ceux prĂ©traitĂ©s ou rĂ©duits par CO. La prĂ©sence d’atomes d’or comme promoteur dans le catalyseur Ni-Co-Fe/C (Au/Ni-Co-Fe/C) a non seulement ralenti l’activitĂ© de Ni-Co-Fe/C, mais aussi a diminuĂ© sa capacitĂ© Ă  former l’eau, bien que n’ayant eu aucun impact significatif sur la sĂ©lectivitĂ© en composĂ©s hydrocarbonĂ©s.Abstract : This work reveals the potential plasma technology presents in producing highly active catalysts for Fischer-Tropsch synthesis (FTS), while simultaneously contracting catalyst production into a single step, which is a certain departure from the traditional multi-step methods such as impregnation or precipitation. Novel catalysts proposed were carbon-based, developed from single metal (Fe/C, Co/C) to bimetallic (Co-Fe), ternary (Mo-Co-Fe, Ni-Co-Fe) and then the promoted Au/Ni-Co-Fe formulations. Since the preparation of nanometric carbon-supported catalysts by plasma is a relatively new phenomenon, it offers the Fischer-Tropsch catalysis prospects of future commercial applications, because of the high temperatures that are achieved in plasma create Fe carbides (Fe3C, Fe5C2), which are assumed to account for Fe-based FTS catalysis. An attempt to fully quantify the carbide phases in the samples by X-ray diffraction (XRD) and Rietveld Quantitative Analysis (RQA) was only partially successful due to the nanometric nature of the materials existing below the instrument’s detection limits. With BET specific surface areas of 35–93 m2.g-1, the catalysts were found to be non-porous, a characteristic that is advantageous because Fischer-Tropsch reaction would operate away from mass transfer limitations. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Spectroscopy (EDX) and X-ray mapping indicated high dispersion of the metal moieties in the carbon matrix, with no signs of nanoparticle agglomeration both in the fresh and used samples. Raman and X-ray Photoelectron Spectroscopy (XPS) characterized the support as highly graphitic, mixed with amorphous carbon arising from substantial defects in the graphite. Evidence from X-ray Absorption Spectroscopy (XAS) using X-ray Absorption Near Edge Structure (XANES) analysis confirmed that plasma synthesized Co/C catalyst contained some carbides (Co3C), which went undetected by XPS. Initial catalyst testing was performed in the fixed-bed reactor at 503 K (230C), 3 MPa pressure, and gas hourly space velocity (GHSV) of 6 000 〖cm〗^3 〖.h〗^(-1).g^(-1) of catalyst for 24 h. Elaborate tests were further executed in a 3-phase continuously stirred-tank slurry reactor (3-φ-CSTSR) isothermally operated between 493–533 K (220–260°C) at 2 MPa pressure, and GHSV = 3 600 〖cm〗^3 〖.h〗^(-1).g^(-1) of catalyst, for 24 h. It was observed that all catalysts were active for FTS, producing both gasoline and diesel fractions, but selectivity depended on the amount of metal in the catalyst or the reaction conditions. The most active catalyst at 493 K was the plasma-synthesized Co/C that showed 40% CO conversion, which was benchmarked against the commercial Fe/C at 32%. This performance was compared to the plasma-synthesized Fe/C (25% CO conversion) and 80%Co-20%Fe/C (10% CO conversion), while both the 50%Co-50%Fe/C and 30%Co-70%Fe/C were inactive. The plasma-synthesized Co/C was also more selective towards the gasoline fraction, but at 533 K it generated excessive CH4 (46%) and CO2 (19%) prompting the development of the Co-Fe/C bimetallics, which exhibited less than 10% selectivity towards CH4 or CO2 at over 40% CO conversion. Similarly, Ni-containing catalysts (Ni-Co-Fe/C) were relatively more active than the bimetallics, exhibiting over 50% CO conversion with higher selectivity towards the gasoline fraction (38%) than towards diesel (20%). The Ni-Co-Fe/C catalysts also produced excessive CH4 (23%) and CO2 (14%), than the Co-Fe/C bimetallics. Overall, the Co-Fe bimetallics and the acidified Co-Fe catalyst (i.e. Mo-Co-Fe/C) were more selective towards diesel formation (~55%). When the effect of pre-treatment medium was investigated, depending on catalyst composition, the CO-reduced catalysts showed enhanced selectivity for diesel fraction (50–67%) than catalysts reduced in H2 (45–55%). In addition, it was observed that catalysts containing high concentration of Co as well as those reduced in H2 generated more H2O than those reduced in CO, and the presence of Au (that is, in Ni-Co-Fe/C) not only depressed the Ni-Co-Fe/C catalyst activity, but it also lowered its capacity to form H2O, although it had no significant impact on the catalyst’s hydrocarbon selectivity

    Oxidation of Glycerol to Lactic Acid by Gold on Acidified Alumina: A Kinetic and DFT Case Study

    Get PDF
    The aim of this chapter is to present proposed kinetic and density functional theory (DFT) models for the selective oxidation of glycerol to various hydroxy-acids over an acidified Au/Îł-Al2O3 catalyst. Glycerol oxidation over gold-based catalysts to value-added chemicals continues to attract attention worldwide. Both the kinetics and theoretical mechanisms of this reaction have been reported in the past. However, some of the reported kinetic data was possibly collected under mass transfer limitations. In this case study we demonstrate that if mass transfer is eliminated, a pseudo zero-order model can be fitted to the experimental data with a high degree of correlation. Furthermore, we propose a plausible mechanism of pyruvaldehyde (PA) isomerisation to lactic acid (LAC) over supported molybdenum Lewis acid sites as investigated with density functional theory (DFT) approach. A proposed DFT model suggested that the rate-limiting step in the isomerisation of PA to LAC, catalysed by a Mo Lewis acid-site, could be the dissociation of a proton from an adsorbed water molecule ? the protonation step

    Effect of CO Concentration on the α-Value of Plasma-Synthesized Co/C Catalyst in Fischer-Tropsch Synthesis

    No full text
    A plasma-synthesized cobalt catalyst supported on carbon (Co/C) was tested for Fischer-Tropsch synthesis (FTS) in a 3-phase continuously-stirred tank slurry reactor (3-φ-CSTSR) operated isothermally at 220 °C (493 K), and 2 MPa pressure. Initial syngas feed stream of H2:CO ratio = 2 with molar composition of 0.6 L/L (60 vol %) H2 and 0.3 L/L (30 vol %) CO, balanced in 0.1 L/L (10 vol %) Ar was used, flowing at hourly space velocity (GHSV) of 3600 cm3·h−1·g−1 of catalyst. Similarly, other syngas feed compositions of H2:CO ratio = 1.5 and 1.0 were used. Results showed ~40% CO conversion with early catalyst selectivity inclined towards formation of gasoline (C4–C12) and diesel (C13–C20) fractions. With prolonged time-on-stream (TOS), catalyst selectivity escalated towards the heavier molecular-weight fractions such as waxes (C21+). The catalyst’s α-value, which signifies the probability of the hydrocarbon chain growth was empirically determined to be in the range of 0.85–0.87 (at H2:CO ratio = 2), demonstrating prevalence of the hydrocarbon-chain propagation, with particular predisposition for wax production. The inhibiting CO effect towards FTS was noted at molar H2:CO ratio of 1.0 and 1.5, giving only ~10% and ~20% CO conversion respectively, although with a high α-value of 0.93 in both cases, which showed predominant production of the heavier molecular weight fractions

    Low-temperature Fischer-Tropsch synthesis for production of synthetic fuels using nanometric carbon-supported iron and cobalt catalysts

    No full text
    Ce travail met en Ă©vidence le potentiel que la technologie des plasmas prĂ©sente dans l’élaboration, en une seule Ă©tape, des catalyseurs de la synthĂšse Fischer-Tropsch (SFT), alors que les mĂ©thodes habituelles ou conventionnelles comme l’imprĂ©gnation et la prĂ©cipitation sont des voies de production multi-Ă©tapes du matĂ©riau catalytique. Les nouveaux catalyseurs ont Ă©tĂ© mis en Ɠuvre Ă  partir d’espĂšces monomĂ©talliques ayant comme support le carbone (Fe/C, Co/C) pour dĂ©velopper des bimĂ©talliques (Co-Fe), des ternaires (Mo-Co-Fe, Ni-Co-Fe) qui ont Ă©tĂ© ensuite formulĂ©s avec la prĂ©sence de promoteurs (Au/Ni-Co-Fe). Du fait que la prĂ©paration par plasma thermique de ces catalyseurs nanomĂ©triques supportĂ©s par le carbone soit relativement rĂ©cente, cela permet d’envisager des perspectives d’applications avec des retombĂ©es industrielles, car les hautes tempĂ©ratures caractĂ©ristiques des plasmas permettent de gĂ©nĂ©rer des carbures de fer (Fe3C, Fe5C2) trĂšs importants dans le processus catalytique de SFT. Des efforts de quantification de toutes les phases de carbures ont Ă©tĂ© effectuĂ©s Ă  l’aide de la diffraction des rayons X (DRX), tandis que l’analyse quantitative Ă  l’aide du Rietveld (AQR) n’a Ă©tĂ© que partiellement concluante Ă  cause de la taille nanomĂ©trique des matĂ©riaux Ă©tudiĂ©s qui est en dessous des limites de dĂ©tection instrumental. Avec des aires spĂ©cifiques de BET comprises entre 35 et 93 m2.g-1, les catalyseurs sont typiques de matĂ©riaux poreux et prĂ©sentent ainsi un avantage pour la SFT car les transformations rĂ©actionnelles ne sont pas limitĂ©es par les phĂ©nomĂšnes de transfert de masse. La microscopie Ă©lectronique Ă  transmission (MET) et la microscopie Ă©lectronique Ă  balayage (MEB) couplĂ©es avec la Spectroscopie Ă  rayons X Ă  dispersion d'Ă©nergie (EDX) et la cartographie des rayons X (cartographie X) ont montrĂ© une grande dispersion des particules mĂ©talliques dans la matrice de carbone, indiquant ainsi l’absence d’agglomĂ©ration sur les Ă©chantillons frais et post rĂ©actionnels. Les caractĂ©risations par la spectroscopie Raman et la Spectroscopie photoĂ©lectronique par rayon X (XPS) ont mis en Ă©vidence un support de catalyseur essentiellement graphitique. Les analyses par la spectroscopie d’absorption des rayons X (SAX), par la spectroscopie de structure prĂšs du front d’absorption des rayons X (XANES) ont confirmĂ© que le catalyseur Co/C obtenu par plasma contenait des carbures (Co3C) qui n’ont pu ĂȘtre rĂ©vĂ©lĂ©s par XPS. Le test catalytique initial a Ă©tĂ© effectuĂ© en rĂ©acteur Ă  lit fixe Ă  503 K (230°C), sous une pression de 3 MPa avec une vitesse volumique spatiale (VVH) de 6 000 〖cm〗^3 〖.h〗^(-1).g^(-1), pour une durĂ©e de 24 heures. Par la suite, les tests ont Ă©tĂ© performĂ©s dans un rĂ©acteur triphasique agitĂ© continu (3-φ-CSTSR) opĂ©rant de façon isotherme pendant 24 heures Ă  des tempĂ©ratures de 493–533 K (220–260°C), sous 2 MPa et Ă  VVH = 3 600 〖 cm〗^3 〖.h〗^(-1).g^(-1). Tous les catalyseurs Ă©tudiĂ©s ont Ă©tĂ© actifs pour la SFT, produisant des fractions de gasoline (essence) et de diesel mais avec des sĂ©lectivitĂ©s qui dĂ©pendaient de la proportion de mĂ©tal prĂ©sent dans le catalyseur et des conditions rĂ©actionnelles. À 493 K, le catalyseur le plus actif a Ă©tĂ© Co/C, obtenu par plasma, avec 40% de conversion qui contraste avec les 32% du meilleur catalyseur commercial Fe/C. Ces performances ont Ă©tĂ© comparĂ©es avec celles d’autres catalyseurs synthĂ©tisĂ©s par plasma Fe/C (25% de conversion) et 80%Co-20%Fe/C (10%), tandis que 50%Co-50%Fe/C, 30%Co-70%Fe/C n’ont montrĂ© aucune activitĂ©. Le catalyseur Co/C a Ă©tĂ© aussi le plus sĂ©lectif pour la formation de gasoline; mais Ă  533 K il a gĂ©nĂ©rĂ© des quantitĂ©s excessives de CH4 (46%) et CO2 (19%); ce qui a conduit Ă  l’idĂ©e de synthĂ©tiser des bimĂ©talliques Co-Fe/C qui ont permis d’abaisser la sĂ©lectivitĂ© en CH4 ou CO2 en dessous de 10%, pour une conversion de CO dĂ©passant 40%. De mĂȘme, les catalyseurs contenant du Ni (Ni-Co-Fe/C) ont Ă©tĂ© plus actifs avec des conversions de CO dĂ©passant 50% avec des sĂ©lectivitĂ©s en gasoline (38%) plus Ă©levĂ©es qu’en diesel (20%). Ce catalyseur bimĂ©tallique a aussi favorisĂ© la formation importante de CH4 (23%) et de CO2 (14%) beaucoup plus que dans le cas du solide Co-Fe/C. Globalement, le catalyseur bimĂ©tallique Co-Fe et sa variante acidifiĂ©e (exemple Mo-Co-Fe) ont Ă©tĂ© plus sĂ©lectifs en diesel (~ 55%). L’influence du prĂ©traitement a Ă©tĂ© examinĂ©e et, selon la composition des catalyseurs, ceux qui ont Ă©tĂ© initialement rĂ©duits par CO avaient montrĂ© une amĂ©lioration de la sĂ©lectivitĂ© en diesel (50–67%); ces performances se sont avĂ©rĂ©es meilleures par rapport Ă  celles des solides initialement rĂ©duits par H2 (45–55%). En outre, les catalyseurs aux concentrations Ă©levĂ©es en cobalt, ainsi que ceux prĂ©traitĂ©s sous hydrogĂšne ont gĂ©nĂ©rĂ© plus d’eau que ceux prĂ©traitĂ©s ou rĂ©duits par CO. La prĂ©sence d’atomes d’or comme promoteur dans le catalyseur Ni-Co-Fe/C (Au/Ni-Co-Fe/C) a non seulement ralenti l’activitĂ© de Ni-Co-Fe/C, mais aussi a diminuĂ© sa capacitĂ© Ă  former l’eau, bien que n’ayant eu aucun impact significatif sur la sĂ©lectivitĂ© en composĂ©s hydrocarbonĂ©s.Abstract : This work reveals the potential plasma technology presents in producing highly active catalysts for Fischer-Tropsch synthesis (FTS), while simultaneously contracting catalyst production into a single step, which is a certain departure from the traditional multi-step methods such as impregnation or precipitation. Novel catalysts proposed were carbon-based, developed from single metal (Fe/C, Co/C) to bimetallic (Co-Fe), ternary (Mo-Co-Fe, Ni-Co-Fe) and then the promoted Au/Ni-Co-Fe formulations. Since the preparation of nanometric carbon-supported catalysts by plasma is a relatively new phenomenon, it offers the Fischer-Tropsch catalysis prospects of future commercial applications, because of the high temperatures that are achieved in plasma create Fe carbides (Fe3C, Fe5C2), which are assumed to account for Fe-based FTS catalysis. An attempt to fully quantify the carbide phases in the samples by X-ray diffraction (XRD) and Rietveld Quantitative Analysis (RQA) was only partially successful due to the nanometric nature of the materials existing below the instrument’s detection limits. With BET specific surface areas of 35–93 m2.g-1, the catalysts were found to be non-porous, a characteristic that is advantageous because Fischer-Tropsch reaction would operate away from mass transfer limitations. Transmission Electron Microscopy (TEM) and Scanning Electron Microscopy (SEM) coupled with Energy Dispersive X-ray Spectroscopy (EDX) and X-ray mapping indicated high dispersion of the metal moieties in the carbon matrix, with no signs of nanoparticle agglomeration both in the fresh and used samples. Raman and X-ray Photoelectron Spectroscopy (XPS) characterized the support as highly graphitic, mixed with amorphous carbon arising from substantial defects in the graphite. Evidence from X-ray Absorption Spectroscopy (XAS) using X-ray Absorption Near Edge Structure (XANES) analysis confirmed that plasma synthesized Co/C catalyst contained some carbides (Co3C), which went undetected by XPS. Initial catalyst testing was performed in the fixed-bed reactor at 503 K (230C), 3 MPa pressure, and gas hourly space velocity (GHSV) of 6 000 〖cm〗^3 〖.h〗^(-1).g^(-1) of catalyst for 24 h. Elaborate tests were further executed in a 3-phase continuously stirred-tank slurry reactor (3-φ-CSTSR) isothermally operated between 493–533 K (220–260°C) at 2 MPa pressure, and GHSV = 3 600 〖cm〗^3 〖.h〗^(-1).g^(-1) of catalyst, for 24 h. It was observed that all catalysts were active for FTS, producing both gasoline and diesel fractions, but selectivity depended on the amount of metal in the catalyst or the reaction conditions. The most active catalyst at 493 K was the plasma-synthesized Co/C that showed 40% CO conversion, which was benchmarked against the commercial Fe/C at 32%. This performance was compared to the plasma-synthesized Fe/C (25% CO conversion) and 80%Co-20%Fe/C (10% CO conversion), while both the 50%Co-50%Fe/C and 30%Co-70%Fe/C were inactive. The plasma-synthesized Co/C was also more selective towards the gasoline fraction, but at 533 K it generated excessive CH4 (46%) and CO2 (19%) prompting the development of the Co-Fe/C bimetallics, which exhibited less than 10% selectivity towards CH4 or CO2 at over 40% CO conversion. Similarly, Ni-containing catalysts (Ni-Co-Fe/C) were relatively more active than the bimetallics, exhibiting over 50% CO conversion with higher selectivity towards the gasoline fraction (38%) than towards diesel (20%). The Ni-Co-Fe/C catalysts also produced excessive CH4 (23%) and CO2 (14%), than the Co-Fe/C bimetallics. Overall, the Co-Fe bimetallics and the acidified Co-Fe catalyst (i.e. Mo-Co-Fe/C) were more selective towards diesel formation (~55%). When the effect of pre-treatment medium was investigated, depending on catalyst composition, the CO-reduced catalysts showed enhanced selectivity for diesel fraction (50–67%) than catalysts reduced in H2 (45–55%). In addition, it was observed that catalysts containing high concentration of Co as well as those reduced in H2 generated more H2O than those reduced in CO, and the presence of Au (that is, in Ni-Co-Fe/C) not only depressed the Ni-Co-Fe/C catalyst activity, but it also lowered its capacity to form H2O, although it had no significant impact on the catalyst’s hydrocarbon selectivity

    Synthesis of Cubic Aluminum Nitride (AlN) Coatings through Suspension Plasma Spray (SPS) Technology

    No full text
    Thermal spraying of aluminum nitride (AlN) is a challenging issue because it decomposes at a high temperature. In this work, the use of suspension plasma spray (SPS) technology is proposed for the in situ synthesis and deposition of cubic-structured AlN coatings on metallic substrates. The effects of the nitriding agent, the suspension liquid carrier, the substrate materials and the standoff distance during deposition by SPS were investigated. The plasma-synthesized coatings were analyzed by X-ray diffraction (XRD), optical microscopy (OM) and scanning electron microscopy (SEM). The results show higher AlN content in the coatings deposited on a carbon steel substrate (~82%) when compared to titanium substrate (~30%) or molybdenum (~15%). Melamine mixed with pure aluminum powder produced AlN-richer coatings of up to 82% when compared to urea mixed with the Al (~25% AlN). Hexadecane was a relatively better liquid carrier than the oxygen-rich liquid carriers such as ethanol or ethylene glycol. When the materials were exposed to a molten aluminum–magnesium alloy at 850 °C for 2 h, the corrosion resistance of the AlN-coated carbon steel substrate showed improved performance in comparison to the uncoated substrate

    Use of Plasma-Synthesized Nano-Catalysts for CO Hydrogenation in Low-Temperature Fischer–Tropsch Synthesis: Effect of Catalyst Pre-Treatment

    No full text
    A study was done on the effect of temperature and catalyst pre-treatment on CO hydrogenation over plasma-synthesized catalysts during the Fischer–Tropsch synthesis (FTS). Nanometric Co/C, Fe/C, and 50%Co-50%Fe/C catalysts with BET specific surface area of ~80 m2 g–1 were tested at a 2 MPa pressure and a gas hourly space velocity (GHSV) of 2000 cm3 h−1 g−1 of a catalyst (at STP) in hydrogen-rich FTS feed gas (H2:CO = 2.2). After pre-treatment in both H2 and CO, transmission electron microscopy (TEM) showed that the used catalysts shifted from a mono-modal particle-size distribution (mean ~11 nm) to a multi-modal distribution with a substantial increase in the smaller nanoparticles (~5 nm), which was statistically significant. Further characterization was conducted by scanning electron microscopy (SEM with EDX elemental mapping), X-ray diffraction (XRD) and X-ray photoelectron spectroscopy (XPS). The average CO conversion at 500 K was 18% (Co/C), 17% (Fe/C), and 16% (Co-Fe/C); 46%, 37%, and 57% at 520 K; and 85%, 86% and 71% at 540 K respectively. The selectivity of Co/C for C5+ was ~98% with 8% gasoline, 61%, diesel and 28% wax (fractions) at 500 K; 22% gasoline, 50% diesel, and 19% wax at 520 K; and 24% gasoline, 34% diesel, and 11% wax at 540 K, besides CO2 and CH4 as by-products. Fe-containing catalysts manifested similar trends, with a poor conformity to the Anderson–Schulz–Flory (ASF) product distribution

    Proven Anti-Wetting Properties of Molybdenum Tested for High-Temperature Corrosion-Resistance with Potential Application in the Aluminum Industry

    No full text
    The behavior of Mo in contact with molten Al was modelled by classical molecular dynamics (CMD) simulation of a pure Mo solid in contact with molten Al at 1200 K using the Materials Studio¼. Results showed that no reaction or cross diffusion of atoms occurs at the Mo(s)–Al(l) interface, and that molten Al atoms exhibit an epitaxial alignment with the exposed solid Mo crystal morphology. Furthermore, the two phases {Mo(s) and Al(l)} are predicted to interact with weak van der Waals forces and give interfacial energy of about 203 mJ/m2. Surface energy measurements by the sessile drop experiment using the van Oss–Chaudhury–Good (VCG) theory established a Mo(s)–Al(l) interface energy equivalent to 54 mJ/m2, which supports the weak van der Waals interaction. The corrosion resistance of a high purity (99.97%) Mo block was then tested in a molten alloy of 5% Mg mixed in Al (Al-5 wt.%Mg) at 1123 K for 96 h, using the ALCAN’s standard “immersion” test, and the results are presented. No Mo was found to be dissolved in the molten Al-Mg alloy. However, a 20% mass loss in the Mo block was due to intergranular corrosion scissoring the Mo block in the ALCAN test, but not as a result of the reaction of pure Mo with the molten Al-Mg alloy. It was observed that the Al-Mg alloy did not stick to the Mo block

    Synthesis and Characterization of Co/C and Fe/C Nanocatalysts for Fischer–Tropsch Synthesis: A Comparative Study Using a Fixed-Bed Reactor

    No full text
    Production of Fischer–Tropsch catalysts is challenging because it involves controlling and optimizing multiple parameters in numerous technical steps. Here, we present C-supported nanometric Fe and Co catalysts synthesized by plasma spraying, a method that contracts catalyst production into a single step, in contrast to traditional multistep catalyst production by precipitation or impregnation. The catalysts were reduced <i>in situ</i> and then tested for Fischer–Tropsch synthesis in a gas–solid fixed-bed reactor at 230 °C and 30-bar pressure for 24 h. The performance of plasma-synthesized catalysts was superior at a gas hourly space velocity of 6,000 mL·g<sub><i>cat</i></sub><sup>–1</sup>·h<sup>–1</sup>, with Fe/C catalysts showing about 30% CO conversion per pass while Co/C catalysts yielded about 20% CO conversion. Identical C-supported Co and Fe catalysts prepared by impregnation or precipitation gave CO conversions of about 7% under similar reaction conditions
    corecore