18 research outputs found

    White Paper on Ambient ultrafine particles: evidence for policy makers

    Get PDF
    Ultrafine particle, as defined by ISO/TC 146/SC 2/WG1 N 320 is “A particle sized about 100 nm in diameter or less”. The same definition applies to a nanoparticle as “A particle with a nominal diameter smaller than about 100 nm”. Ultrafine particles (UFP) is a term used in atmospheric sciences, while “nanoparticles” applies to material engineering

    Inter-annual trends of ultrafine particles in urban Europe

    Get PDF
    Ultrafine particles (UFP, those with diameters ≤ 100 nm), have been reported to potentially penetrate deeply into the respiratory system, translocate through the alveoli, and affect various organs, potentially correlating with increased mortality. The aim of this study is to assess long-term trends (5–11 years) in mostly urban UFP concentrations based on measurements of particle number size distributions (PNSD). Additionally, concentrations of other pollutants and meteorological variables were evaluated to support the interpretations. PNSD datasets from 12 urban background (UB), 5 traffic (TR), 3 suburban background (SUB) and 1 regional background (RB) sites in 15 European cities and 1 in the USA were evaluated. The non-parametric Theil-Sen's method was used to detect monotonic trends. Meta-analyses were carried out to assess the overall trends and those for different environments. The results showed significant decreases in NO, NO2, BC, CO, and particle concentrations in the Aitken (25–100 nm) and the Accumulation (100–800 nm) modes, suggesting a positive impact of the implementation of EURO 5/V and 6/VI vehicle standards on European air quality. The growing use of Diesel Particle Filters (DPFs) might also have clearly reduced exhaust emissions of BC, PM, and the Aitken and Accumulation mode particles. However, as reported by prior studies, there remains an issue of poor control of Nucleation mode particles (smaller than 25 nm), which are not fully reduced with current DPFs, without emission controls for semi-volatile organic compounds, and might have different origins than road traffic. Thus, contrasting trends for Nucleation mode particles were obtained across the cities studied. This mode also affected the UFP and total PNC trends because of the high proportion of Nucleation mode particles in both concentration ranges. It was also found that the urban temperature increasing trends might have also influenced those of PNC, Nucleation and Aitken modes.</p

    Road Traffic Noise at the Residence, Annoyance, and Cognitive Function in Elderly Women

    No full text
    The detrimental effects of traffic noise on cognition in children are well documented. Not much is known about the health effects in adults. We investigated the association of residential exposure to road traffic noise and annoyance due to road traffic noise with cognitive function in a cohort of 288 elderly women from the longitudinal Study on the influence of Air pollution on Lung function, Inflammation and Aging (SALIA) in Germany. Residential noise levels&#8212;weighted 24-h mean (LDEN) and nighttime noise (LNIGHT)&#8212;were modeled for the most exposed facade of dwellings and dichotomized at &#8805;50 dB(A). Traffic noise annoyance (day and night) was estimated by questionnaire. Cognitive function was assessed using the Consortium to Establish a Registry on Alzheimer&#8217;s Disease (CERAD-Plus) Neuropsychological Assessment Battery. The modeled noise levels were associated with impaired total cognition and the constructional praxis domain, independently of air pollution. Self-reported noise annoyance was associated with better performance in semantic memory and constructional praxis domains. This finding should be interpreted with caution since we could not control for potential confounding by hearing loss. Noise levels and annoyance were associated, but their health effects seemed mutually independent

    Effects of ambient air pollution on respiratory tract complaints and airway inflammation in primary school children

    No full text
    Respiratory health effects of ambient air pollution were studied in 605 school children 9 to 13 years in Eskisehir, Turkey. Each child performed a fractional exhaled nitric oxide (FENO) measurement and a lung function test (LFT). Self-reported respiratory tract complaints (having cold, complaints of throat, runny nose and shortness of breath/wheezing) in the last 7 days and on the day of testing were also recorded. As acute health outcomes were investigated, weekly average ambient concentrations of ozone (O-3), nitrogen dioxide (NO2) and sulfur dioxide (SO2) were determined by passive sampling in the school playgrounds simultaneously with the health survey. Effects of air pollution on respiratory tract complaints and exhaled NO/lung function were estimated by multivariate logistic regression and multivariate linear mixed effects models, respectively. Upper respiratory tract complaints were significantly (p = 0.05). Lung function was not associated with upper respiratory tract complaints and FEN levels. Peak Expiratory Flow (PEF) levels were negatively associated with weekly average O-3 levels for children without upper respiratory tract complaints. In summary, elevated levels of air pollutants increased respiratory tract complaints in children. (C) 2014 Elsevier B.V. All rights reserved

    Longitudinal relationship of particulate matter and metabolic control and severe hypoglycaemia in children and adolescents with type 1 diabetes

    No full text
    Background: Evidence for the metabolic impact of long-term exposure to air pollution on diabetes is lacking. We investigated the association of particulate matter <10 mu m (PM10) and <2.5 mu m (PM2.5) with yearly averages of HbA1c, daily insulin dose (IU/kg) and rates of severe hypoglycaemia in type 1 diabetes (T1D). Methods: We studied data of 44,383 individuals with T1D < 21 years which were documented in 377 German centres within the diabetes prospective follow-up registry (DPV) between 2009 and 2018. Outcomes were aggregated by year and by patient. PM10- and PM2.5-yearly averages prior to the respective treatment year were linked to individuals via the five-digit postcode areas of residency. Repeated measures linear and negative binomial regression were used to study the association between PM-quartiles (Q1 lowest, Q4 highest concen-tration) and yearly averages of HbA1c, daily insulin dose and rates of severe hypoglycaemia (confounders: sex, time-dependent age, age at diabetes onset, time-dependent type of treatment, migratory background, degree of urbanisation and socioeconomic index of deprivation). Results: Adjusted mean HbA1c increased with PM10 (Q1: 7.96% [95%-CI: 7.95-7.98], Q4: 8.03% [8.02-8.05], p-value<0.001) and with PM2.5 (Q1: 7.97% [7.95-7.99], Q4: 8.02% [8.01-8.04], p < 0.001). Changes in daily insulin dose were inversely related to PM (PM10 and PM2.5: Q1 0.85 IU/kg [0.84-0.85], Q4: 0.83 IU/kg [0.82-0.83], p < 0.001). Adjusted rates of severe hypoglycaemia increased with PM-quartile groups (PM10 Q1:11.2 events/100 PY [10.9-11.5], PM10 Q4: 15.3 [14.9-15.7], p < 0.001; PM2.5 Q1: 9.9 events/100 PY [9.6-10.2], PM2.5 Q4: 14.2 [13.9-14.6], p < 0.001). Discussion: Air pollution was associated with higher HbA1c levels and increased risk of severe hypoglycaemia in people with T1D, consequently indicating a higher risk of diabetes complications. Further studies are needed to explore causal pathways of the observed associations

    Associations of long-term exposure to air pollution and noise with body composition in children and adults: Results from the LEAD general population study

    No full text
    Background: While long-term air pollution and noise exposure has been linked to increasing cardiometabolic disease risk, potential effects on body composition remains unclear. This study aimed to investigate the associations of long-term air pollution, noise and body composition. Methods: We used repeated data from the LEAD (Lung, hEart, sociAl, boDy) study conducted in Vienna, Austria. Body mass index (BMI; kg/m2), fat mass index (FMI; z-score), and lean mass index (LMI; z-score) were measured using dual-energy x-ray absorptiometry at the first (t0; 2011-ongoing) and second (t1; 2017-ongoing) examinations. Annual particulate matter (PM10) and nitrogen dioxide (NO2) concentrations were estimated with the GRAMM/GRAL model (2015–2021). Day-evening-night (Lden) and night-time (Lnight) noise levels from transportation were modeled for 2017 following the European Union Directive 2002/49/EC. Exposures were assigned to residential addresses. We performed analyses separately in children/adolescents and adults, using linear mixed-effects models with random participant intercepts and linear regression models for cross-sectional and longitudinal associations, respectively. Models were adjusted for co-exposure, lifestyle and sociodemographics. Results: A total of 19,202 observations (nt0 = 12,717, nt1 = 6,485) from participants aged 6–86 years (mean age at t0 = 41.0 years; 52.9 % female; mean PM10 = 21 µg/m3; mean follow-up time = 4.1 years) were analyzed. Among children and adolescents (age ≤ 18 years at first visit), higher PM10 exposure was cross-sectionally associated with higher FMI z-scores (0.09 [95 % Confidence Interval (CI): 0.03, 0.16]) and lower LMI z-scores (−0.05 [95 % CI: −0.10, −0.002]) per 1.8 µg/m3. Adults showed similar trends in cross-sectional associations as children, though not reaching statistical significance. We observed no associations for noise exposures. Longitudinal analyses on body composition changes over time yielded positive associations for PM10, but not for other exposures. Conclusion: Air pollution exposure, mainly PM10, was cross-sectionally and longitudinally associated with body composition in children/adolescents and adults. Railway/road-traffic noise exposures showed no associations in both cross-sectional and longitudinal analyses

    Outdoor air pollution and hormone-assessed pubertal development in children: Results from the GINIplus and LISA birth cohorts

    Get PDF
    Background Air pollution is hypothesized to affect pubertal development. However, the few studies on this topic yielded overall mixed results. These studies did not consider important pollutants like ozone, and none of them involved pubertal development assessed by estradiol and testosterone measurements. We aimed to analyze associations between long-term exposure to four pollutants and pubertal development based on sex hormone concentrations among 10-year-old children. Methods These cross-sectional analyses were based on the 10-year follow-up medical examinations of 1945 children from the Munich and Wesel centers of the GINIplus and LISA German birth cohorts. Female and male pubertal development was assessed by dichotomizing the concentration of hormones in serum at 18.4 pmol/L and 0.087 nmol/L using the lower limits of quantification for estradiol and testosterone, respectively. Land-use regression models derived annual average concentrations of particulate matter with an aerodynamic diameter < 2.5 and 10 µm (PM2.5 and PM10), as well as spatial models assessed yearly average concentrations of nitrogen dioxide (NO2) and ozone, were calculated at the 10-year residential addresses. To evaluate associations, we utilized logistic regressions adjusted for potential covariates. The analyses were stratified by area and sex. Results Around 73% of the 943 females and 25% of the 1002 males had a high level of hormones and had already started puberty at the age of 10. Overall, we found no statistically significant associations between exposure to particles (PM2.5 or PM10) and pubertal development. Results on NO2 and ozone were not significant as well; for instance, per 10 µg/m3 increase in ozone concentration, odds ratios and 95% confidence intervals were 0.900 (0.605, 1.339) and 0.830 (0.573, 1.203) for females and males, respectively. Stratified by area, the aforementioned results did not reveal any associations either. Conclusions Our study did not observe the associations between ambient air pollutants and pubertal development determined by estradiol and testosterone levels in children. However, due to the current limited number of studies on this topic, our results should be cautiously interpreted. Future longitudinal studies are needed to assess the association
    corecore