4,891 research outputs found

    Mesoscopic oscillations of the conductance of disordered metallic samples as a function of temperature

    Full text link
    We show theoretically and experimentally that the conductance of small disordered samples exhibits random oscillations as a function of temperature. The amplitude of the oscillations decays as a power law of temperature, and their characteristic period is of the order of the temperature itself

    Conductance fluctuations in quasi-two-dimensional systems: a practical view

    Full text link
    The universal conductance fluctuations of quasi-two-dimensional systems are analyzed with experimental considerations in mind. The traditional statistical metrics of these fluctuations (such as variance) are shown to have large statistical errors in such systems. An alternative characteristic is identified, the inflection point of the correlation function in magnetic field, which is shown to be significantly more useful as an experimental metric and to give a more robust measure of phase coherence.Comment: 9 pages, 7 figure

    Magnetoconductivity of low-dimensional disordered conductors at the onset of the superconducting transition

    Full text link
    Magnetoconductivity of the disordered two- and three-dimensional superconductors is addressed at the onset of superconducting transition. In this regime transport is dominated by the fluctuation effects and we account for the interaction corrections coming from the Cooper channel. In contrast to many previous studies we consider strong magnetic fields and various temperature regimes, which allow to resolve the existing discrepancies with the experiments. Specifically, we find saturation of the fluctuations induced magneto-conductivity for both two- and three-dimensional superconductors at already moderate magnetic fields and discuss possible dimensional crossover at the immediate vicinity of the critical temperature. The surprising observation is that closer to the transition temperature weaker magnetic field provides the saturation. It is remarkable also that interaction correction to magnetoconductivity coming from the Cooper channel, and specifically the so called Maki-Thompson contribution, remains to be important even away from the critical region.Comment: 4 pages, 1 figur

    Distribution function of persistent current

    Full text link
    We introduce a variant of the replica trick within the nonlinear sigma model that allows calculating the distribution function of the persistent current. In the diffusive regime, a Gaussian distribution is derived. This result holds in the presence of local interactions as well. Breakdown of the Gaussian statistics is predicted for the tails of the distribution function at large deviations

    Ferromagnetism of Weakly-Interacting Electrons in Disordered Systems

    Full text link
    It was realized two decades ago that the two-dimensional diffusive Fermi liquid phase is unstable against arbitrarily weak electron-electron interactions. Recently, using the nonlinear sigma model developed by Finkelstein, several authors have shown that the instability leads to a ferromagnetic state. In this paper, we consider diffusing electrons interacting through a ferromagnetic exchange interaction. Using the Hartree-Fock approximation to directly calculate the electron self energy, we find that the total energy is minimized by a finite ferromagnetic moment for arbitrarily weak interactions in two dimensions and for interaction strengths exceeding a critical proportional to the conductivity in three dimensions. We discuss the relation between our results and previous ones

    Observation of mesoscopic conductance fluctuations in YBaCuO grain boundary Josephson Junctions

    Full text link
    Magneto-fluctuations of the normal resistance R_N have been reproducibly observed in high critical temp erature superconductor (HTS) grain boundary junctions, at low temperatures. We attribute them to mesoscopic transport in narrow channels across the grain boundary line. The Thouless energy appears to be the relevant energy scale. Our findings have significant implications on quasiparticle relaxation and coherent transport in HTS grain boundaries.Comment: Revised version, minor changes. 4 pages, 4 figure

    Uninformed sacrifice: evidence against long-range alarm transmission in foraging ants exposed to a localized perturbation

    Full text link
    It is well stablished that danger information can be transmitted by ants through relatively small distances, provoking either a state of alarm when they move away from potentially dangerous stimulus, or charge toward it aggressively. There is almost no knowledge if danger information can be transmitted along large distances. In this paper, we perturb leaf cutting ants of the species Atta insularis while they forage in their natural evioronment at a certain point of the foraging line, so ants make a "U" turn to escape from the danger zone and go back to the nest. Our results strongly suggest that those ants do not transmit "danger information" to other nestmates marching towards the danger area. The individualistic behavior of the ants returning from the danger zone results in a depression of the foraging activity due to the systematic sacrifice of non-informed individuals.Comment: 5 pages, 2 figure

    Photovoltaic Current Response of Mesoscopic Conductors to Quantized Cavity Modes

    Full text link
    We extend the analysis of the effects of electromagnetic (EM) fields on mesoscopic conductors to include the effects of field quantization, motivated by recent experiments on circuit QED. We show that in general there is a photovoltaic (PV) current induced by quantized cavity modes at zero bias across the conductor. This current depends on the average photon occupation number and vanishes identically when it is equal to the average number of thermal electron-hole pairs. We analyze in detail the case of a chaotic quantum dot at temperature T_e in contact with a thermal EM field at temperature T_f, calculating the RMS size of the PV current as a function of the temperature difference, finding an effect ~pA.Comment: 4 pages, 2 figure

    Quantum coherence in a ferromagnetic metal: time-dependent conductance fluctuations

    Full text link
    Quantum coherence of electrons in ferromagnetic metals is difficult to assess experimentally. We report the first measurements of time-dependent universal conductance fluctuations in ferromagnetic metal (Ni0.8_{0.8}Fe0.2_{0.2}) nanostructures as a function of temperature and magnetic field strength and orientation. We find that the cooperon contribution to this quantum correction is suppressed, and that domain wall motion can be a source of coherence-enhanced conductance fluctuations. The fluctuations are more strongly temperature dependent than those in normal metals, hinting that an unusual dephasing mechanism may be at work.Comment: 5 pages, 4 figure
    corecore