80 research outputs found

    Donor Retention in Online Crowdfunding Communities: A Case Study of DonorsChoose.org

    Full text link
    Online crowdfunding platforms like DonorsChoose.org and Kickstarter allow specific projects to get funded by targeted contributions from a large number of people. Critical for the success of crowdfunding communities is recruitment and continued engagement of donors. With donor attrition rates above 70%, a significant challenge for online crowdfunding platforms as well as traditional offline non-profit organizations is the problem of donor retention. We present a large-scale study of millions of donors and donations on DonorsChoose.org, a crowdfunding platform for education projects. Studying an online crowdfunding platform allows for an unprecedented detailed view of how people direct their donations. We explore various factors impacting donor retention which allows us to identify different groups of donors and quantify their propensity to return for subsequent donations. We find that donors are more likely to return if they had a positive interaction with the receiver of the donation. We also show that this includes appropriate and timely recognition of their support as well as detailed communication of their impact. Finally, we discuss how our findings could inform steps to improve donor retention in crowdfunding communities and non-profit organizations.Comment: preprint version of WWW 2015 pape

    Modeling Interdependent and Periodic Real-World Action Sequences

    Full text link
    Mobile health applications, including those that track activities such as exercise, sleep, and diet, are becoming widely used. Accurately predicting human actions is essential for targeted recommendations that could improve our health and for personalization of these applications. However, making such predictions is extremely difficult due to the complexities of human behavior, which consists of a large number of potential actions that vary over time, depend on each other, and are periodic. Previous work has not jointly modeled these dynamics and has largely focused on item consumption patterns instead of broader types of behaviors such as eating, commuting or exercising. In this work, we develop a novel statistical model for Time-varying, Interdependent, and Periodic Action Sequences. Our approach is based on personalized, multivariate temporal point processes that model time-varying action propensities through a mixture of Gaussian intensities. Our model captures short-term and long-term periodic interdependencies between actions through Hawkes process-based self-excitations. We evaluate our approach on two activity logging datasets comprising 12 million actions taken by 20 thousand users over 17 months. We demonstrate that our approach allows us to make successful predictions of future user actions and their timing. Specifically, our model improves predictions of actions, and their timing, over existing methods across multiple datasets by up to 156%, and up to 37%, respectively. Performance improvements are particularly large for relatively rare and periodic actions such as walking and biking, improving over baselines by up to 256%. This demonstrates that explicit modeling of dependencies and periodicities in real-world behavior enables successful predictions of future actions, with implications for modeling human behavior, app personalization, and targeting of health interventions.Comment: Accepted at WWW 201

    Modeling Individual Cyclic Variation in Human Behavior

    Full text link
    Cycles are fundamental to human health and behavior. However, modeling cycles in time series data is challenging because in most cases the cycles are not labeled or directly observed and need to be inferred from multidimensional measurements taken over time. Here, we present CyHMMs, a cyclic hidden Markov model method for detecting and modeling cycles in a collection of multidimensional heterogeneous time series data. In contrast to previous cycle modeling methods, CyHMMs deal with a number of challenges encountered in modeling real-world cycles: they can model multivariate data with discrete and continuous dimensions; they explicitly model and are robust to missing data; and they can share information across individuals to model variation both within and between individual time series. Experiments on synthetic and real-world health-tracking data demonstrate that CyHMMs infer cycle lengths more accurately than existing methods, with 58% lower error on simulated data and 63% lower error on real-world data compared to the best-performing baseline. CyHMMs can also perform functions which baselines cannot: they can model the progression of individual features/symptoms over the course of the cycle, identify the most variable features, and cluster individual time series into groups with distinct characteristics. Applying CyHMMs to two real-world health-tracking datasets -- of menstrual cycle symptoms and physical activity tracking data -- yields important insights including which symptoms to expect at each point during the cycle. We also find that people fall into several groups with distinct cycle patterns, and that these groups differ along dimensions not provided to the model. For example, by modeling missing data in the menstrual cycles dataset, we are able to discover a medically relevant group of birth control users even though information on birth control is not given to the model.Comment: Accepted at WWW 201

    Goal-setting And Achievement In Activity Tracking Apps: A Case Study Of MyFitnessPal

    Full text link
    Activity tracking apps often make use of goals as one of their core motivational tools. There are two critical components to this tool: setting a goal, and subsequently achieving that goal. Despite its crucial role in how a number of prominent self-tracking apps function, there has been relatively little investigation of the goal-setting and achievement aspects of self-tracking apps. Here we explore this issue, investigating a particular goal setting and achievement process that is extensive, recorded, and crucial for both the app and its users' success: weight loss goals in MyFitnessPal. We present a large-scale study of 1.4 million users and weight loss goals, allowing for an unprecedented detailed view of how people set and achieve their goals. We find that, even for difficult long-term goals, behavior within the first 7 days predicts those who ultimately achieve their goals, that is, those who lose at least as much weight as they set out to, and those who do not. For instance, high amounts of early weight loss, which some researchers have classified as unsustainable, leads to higher goal achievement rates. We also show that early food intake, self-monitoring motivation, and attitude towards the goal are important factors. We then show that we can use our findings to predict goal achievement with an accuracy of 79% ROC AUC just 7 days after a goal is set. Finally, we discuss how our findings could inform steps to improve goal achievement in self-tracking apps

    Analysis and Forecasting of Trending Topics in Online Media Streams

    Full text link
    Among the vast information available on the web, social media streams capture what people currently pay attention to and how they feel about certain topics. Awareness of such trending topics plays a crucial role in multimedia systems such as trend aware recommendation and automatic vocabulary selection for video concept detection systems. Correctly utilizing trending topics requires a better understanding of their various characteristics in different social media streams. To this end, we present the first comprehensive study across three major online and social media streams, Twitter, Google, and Wikipedia, covering thousands of trending topics during an observation period of an entire year. Our results indicate that depending on one's requirements one does not necessarily have to turn to Twitter for information about current events and that some media streams strongly emphasize content of specific categories. As our second key contribution, we further present a novel approach for the challenging task of forecasting the life cycle of trending topics in the very moment they emerge. Our fully automated approach is based on a nearest neighbor forecasting technique exploiting our assumption that semantically similar topics exhibit similar behavior. We demonstrate on a large-scale dataset of Wikipedia page view statistics that forecasts by the proposed approach are about 9-48k views closer to the actual viewing statistics compared to baseline methods and achieve a mean average percentage error of 45-19% for time periods of up to 14 days.Comment: ACM Multimedia 201

    How to Ask for a Favor: A Case Study on the Success of Altruistic Requests

    Full text link
    Requests are at the core of many social media systems such as question & answer sites and online philanthropy communities. While the success of such requests is critical to the success of the community, the factors that lead community members to satisfy a request are largely unknown. Success of a request depends on factors like who is asking, how they are asking, when are they asking, and most critically what is being requested, ranging from small favors to substantial monetary donations. We present a case study of altruistic requests in an online community where all requests ask for the very same contribution and do not offer anything tangible in return, allowing us to disentangle what is requested from textual and social factors. Drawing from social psychology literature, we extract high-level social features from text that operationalize social relations between recipient and donor and demonstrate that these extracted relations are predictive of success. More specifically, we find that clearly communicating need through the narrative is essential and that that linguistic indications of gratitude, evidentiality, and generalized reciprocity, as well as high status of the asker further increase the likelihood of success. Building on this understanding, we develop a model that can predict the success of unseen requests, significantly improving over several baselines. We link these findings to research in psychology on helping behavior, providing a basis for further analysis of success in social media systems.Comment: To appear at ICWSM 2014. 10pp, 3 fig. Data and other info available at http://www.mpi-sws.org/~cristian/How_to_Ask_for_a_Favor.htm

    I'll Be Back: On the Multiple Lives of Users of a Mobile Activity Tracking Application

    Full text link
    Mobile health applications that track activities, such as exercise, sleep, and diet, are becoming widely used. While these activity tracking applications have the potential to improve our health, user engagement and retention are critical factors for their success. However, long-term user engagement patterns in real-world activity tracking applications are not yet well understood. Here we study user engagement patterns within a mobile physical activity tracking application consisting of 115 million logged activities taken by over a million users over 31 months. Specifically, we show that over 75% of users return and re-engage with the application after prolonged periods of inactivity, no matter the duration of the inactivity. We find a surprising result that the re-engagement usage patterns resemble those of the start of the initial engagement period, rather than being a simple continuation of the end of the initial engagement period. This evidence points to a conceptual model of multiple lives of user engagement, extending the prevalent single life view of user activity. We demonstrate that these multiple lives occur because the users have a variety of different primary intents or goals for using the app. We find evidence for users being more likely to stop using the app once they achieved their primary intent or goal (e.g., weight loss). However, these users might return once their original intent resurfaces (e.g., wanting to lose newly gained weight). Based on insights developed in this work, including a marker of improved primary intent performance, our prediction models achieve 71% ROC AUC. Overall, our research has implications for modeling user re-engagement in health activity tracking applications and has consequences for how notifications, recommendations as well as gamification can be used to increase engagement
    • …
    corecore