23 research outputs found

    Time-dependent wettability changes on plasma-treated surfaces of unmodified and thermally modified European beech wood

    No full text
    The wettability of a freshly cut wood surface will change over time, which is denoted as natural ageing. Water contact angle measurements indicated that the thermal modification of European beech reduces its wettability, but does not affect the rate at which the contact angle increases within a 4-week period. A plasma treatment of fresh wood surfaces enhanced the wettability and equaled the wettability properties of unmodified and thermally modified wood surfaces. The contact angle on plasma-treated wood surfaces increased faster than on unmodified wood surfaces, but a reduction in contact angle by the plasma treatment was still evident after ageing for 4 weeks.Peer reviewe

    Time-dependent wettability changes on plasma-treated surfaces of unmodified and thermally modified European beech wood

    No full text
    Abstract The wettability of a freshly cut wood surface will change over time, which is denoted as natural ageing. Water contact angle measurements indicated that the thermal modification of European beech reduces its wettability, but does not affect the rate at which the contact angle increases within a 4-week period. A plasma treatment of fresh wood surfaces enhanced the wettability and equaled the wettability properties of unmodified and thermally modified wood surfaces. The contact angle on plasma-treated wood surfaces increased faster than on unmodified wood surfaces, but a reduction in contact angle by the plasma treatment was still evident after ageing for 4 weeks.Fachagentur Nachwachsende Rohstoffe http://dx.doi.org/10.13039/50110001081

    Pressurized hot water extraction of Scots pine sapwood: effect of wood size on obtained treatment products

    No full text
    The efficiency of hot water extraction (HWE) is dependent on the size of treated wood. While previous research regarding this size-effect has focused on HWE treating sawdust and wood chips, this study investigated its effect on wood blocks with precise dimensions and a broad range of treatment conditions. Scots pine (Pinus sylvestris L.) sapwood samples with dimensions of 10 × 10 × 20 mm3 and 25 × 25 × 50 mm3 (R × T × L) were HWE treated at 130–170 °C for 40–200 min using liquid-to-solid ratios of 4–20. Our results showed that wood mass loss, which was primarily caused by the decomposition of hemicelluloses, was larger when using small samples. This was mainly assigned to a higher quantity of acetone-soluble decomposition products that remained within the large samples, due to longer distances for diffusion and mass transfer from the wood blocks to the extraction liquid. In line with wood mass loss differences, the amount of dissolved compounds (i.e., carbohydrates) in the extraction liquid at different treatment severities was dependent on the wood size, while the liquid-to-solid ratio had only modest effects. However, composition changes of the extraction liquid, in particular changes in the proportion of poly- and monocarbohydrates with increasing treatment severity, were similar for both sample sizes.Peer reviewe
    corecore