243 research outputs found

    Indole-3-butyric acid induces ectopic formation of metaxylem in the hypocotyl of Arabidopsis thaliana without conversion into indole-3-acetic acid and with a positive interaction with ethylene

    Get PDF
    The role of the auxins indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA) and of the auxin-interacting phytohormone ethylene, on the ectopic formation of primary xylem (xylogenesis in planta) is still little known. In particular, auxin/ethylene-target tissue(s), modality of the xylary process (trans-differentiation vs. de novo formation), and the kind of ectopic elements formed (metaxylem vs. protoxylem) are currently unknown. It is also unclear whether IBA may act on the process independently of conversion into IAA. To investigate these topics, histological analyses were carried out in the hypocotyls of Arabidopsis wild type seedlings and ech2ibr10 and ein3eil1 mutants, which are blocked in IBA-to-IAA conversion and ethylene signalling, respectively. The seedlings were grown under darkness with either IAA or IBA, combined or not with the ethylene precursor 1-aminocyclopropane-1-carboxylic acid. Adventitious root formation was also investigated because this process may compete with xylogenesis. Our results show that ectopic formation of protoxylem and metaxylem occurred as an indirect process starting from the pericycle periclinal derivatives of the hypocotyl basal part. IAA favoured protoxylem formation, whereas IBA induced ectopic metaxylem with ethylene cooperation through the EIN3EIL1 network. Ectopic metaxylem differentiation occurred independently of IBA-to-IAA conversion as mediated by ECH2 and IBR10, and in the place of IBA-induced adventitious root formation

    Prunus Knotted-like genes. Genome-wide analysis, transcriptional response to Cytokinin in micropropagation, and rootstock transformation

    Get PDF
    Knotted1-like homeobox (KNOX) transcription factors are involved in plant development, playing complex roles in aerial organs. As Prunus species include important fruit tree crops of Italy, an exhaustive investigation of KNOX genes was performed using genomic and RNA-seq meta-analyses. Micropropagation is an essential technology for rootstock multiplication; hence, we investigated KNOX transcriptional behavior upon increasing 6-benzylaminopurine (BA) doses and the effects on GF677 propagules. Moreover, gene function in Prunus spp. was assessed by Gisela 6 rootstock transformation using fluorescence and peach KNOX transgenes. Based on ten Prunus spp., KNOX proteins fit into I-II-M classes named after Arabidopsis. Gene number, class member distribution, and chromosome positions were maintained, and exceptions supported the diversification of Prunus from Cerasus subgenera, and that of Armeniaca from the other sections within Prunus. Cytokinin (CK) cis-elements occurred in peach and almond KNOX promoters, suggesting a BA regulatory role in GF677 shoot multiplication as confirmed by KNOX expression variation dependent on dose, time, and interaction. The tripled BA concentration exacerbated stress, altered CK perception genes, and modified KNOX transcriptions, which are proposed to concur in in vitro anomalies. Finally, Gisela 6 transformation efficiency varied (2.6-0.6%) with the genetic construct, with 35S:GFP being more stable than 35S:KNOPE1 lines, which showed leaf modification typical of KNOX overexpression

    Auxin Regulates Arabidopsis

    Full text link

    Nitric oxide cooperates with auxin to mitigate the alterations in the root system caused by cadmium and arsenic

    Get PDF
    Oryza sativa L. is a worldwide food-crop frequently growing in cadmium (Cd)/arsenic (As) polluted soils, with its root-system as the first target of the pollutants. Root-system development involves the establishment of optimal indole-3-acetic acid (IAA) levels, also requiring the conversion of the IAA natural precursor indole-3-butyric acid (IBA) into IAA, causing nitric oxide (NO) formation. Nitric oxide is a stress-signaling molecule. In rice, a negative interaction of Cd or As with endogenous auxin has been demonstrated, as some NO protective effects. However, a synergism between the natural auxins (IAA and/or IBA) and NO was not yet determined and might be important for ameliorating rice metal(oid)-tolerance. With this aim, the stress caused by Cd/As toxicity in the root cells and the possible recovery by either NO or auxins (IAA/IBA) were evaluated after Cd or As (arsenate) exposure, combined or not with the NO-donor compound sodium-nitroprusside (SNP). Root fresh weight, membrane electrolyte leakage, and H2O2 production were also measured. Moreover, endogenous IAA/IBA contents, transcription-levels of OsYUCCA1 and OsASA2 IAA-biosynthetic-genes, and expression of the IAA-influx-carrier OsAUX1 and the IAA-responsive DR5::GUS construct were analyzed, and NO-epifluorescence levels were measured. Results showed that membrane injury by enhanced electrolyte leakage occurred under both pollutants and was reduced by the treatment with SNP only in Cd-presence. By contrast, no membrane injury was caused by either exogenous NO or IAA or IBA. Cd- and As-toxicity also resulted into a decreased root fresh weight, mitigated by the combination of each pollutant with either IAA or IBA. Cd and As decreased the endogenous NO-content, increased H2O2 formation, and altered auxin biosynthesis, levels and distribution in both adventitious (ARs) and mainly lateral roots (LRs). The SNP-formed NO counteracted the pollutants’ effects on auxin distribution/levels, reduced H2O2 formation in Cd-presence, and enhanced AUX1-expression, mainly in As-presence. Each exogenous auxin, but mainly IBA, combined with Cd or As at 10 µM, mitigated the pollutants’ effects by increasing LR-production and by increasing NO-content in the case of Cd. Altogether, results demonstrate that NO and auxin(s) work together in the rice root system to counteract the specific toxic-effects of each pollutant

    Jasmonate and nitric oxide roles in the control of xylary cell formation and identity in Arabidopsis seedlings

    Get PDF
    In basal hypocotyls of dark-grown Arabidopsis seedlings, xylary cells may form from the pericycle as an alternative to another developmental program, i.e. adventitious roots. It is known that several hormones may induce xylogenesis, as jasmonic acid (JA), indole-3-acetic acid (IAA) and indole-3-butyric acid (IBA), which also affect xylary cell identity. Recent studies with the ethylene (ET)-perception mutant ein3eil1 and the ET-precursor 1-aminocyclopropane-1-carboxylic acid (ACC) have shown ET involvement in IBA induced ectopic metaxylem. Nitric oxide (NO) is a reactive free radical molecule, which acts as a messenger in several cell differentiation events, including programmed cell death, moreover it can be produced after IBA/IAA-treatments influencing JA signalling and interacting positively/negatively with ET. To date, NO involvement in ET/JA-mediated xylogenesis has never been investigated.The aim of the present research was to determine the involvement of JA, ET and NO in the control of endogenous/exogenous auxin-induced xylogenesis through a possible crosstalk mediated by EIN3/EIL1. To this aim, ectopic xylem formation was investigated in the hypocotyl of dark-grown Arabidopsis seedlings exposed to various concentrations of JA methyl-ester (JAMe) with/without ACC, IBA or IAA. The xylogenic response in the wild-type (wt) was compared with that of the ein3eil1 mutant, the NO signal was quantified and the its role evaluated by measuring the effects of treatments with a NO donor/scavenger (SNP/cPTIO). Results show that the ectopic formation of protoxylem was enhanced in the wt by JAMe when applied alone at a specific concentration (i.e. 10μM), whereas in ein3eil1 mutant it occurred with any JAMe concentration (i.e. 0.01, 1 and 10 μM). This stimulation of xylary elements mediated by JAMe suggests that a negative interaction between JA and ET-signalling is involved in this developmental program. The negative interaction was confirmed by the reduction in xylogenesis observed in the wt after the combined application of JAMe with ACC, in comparison with JAMe alone. Nitric oxide was detected at early stages of both xylogenesis and adventitious rooting in the hypocotyl pericycle cells and its production was highly enhanced by JAMe at the highest concentration, combined or not with IBA (10 μM). Histological analyses showed that the xylary identity changed when JAMe was applied with each auxin in comparison with treatments with auxin alone. In addition, the IBA/IAA-induced adventitious rooting was increased by the same JAMe concentration enhancing xylogenesis when applied alone. This suggests a role for JA in modulating both developmental programs (adventitious rooting and xylogenesis) in the same target cells (hypocotyl pericycle cells), through an interaction with NO, as summarized in the model proposed (Fig. 1)

    How Agrobacterium rhizogenes triggers de novo root formation in a recalcitrant woody plant: an integrated histological, ultrastructural and molecular analysis

    Get PDF
    Adventitious rooting might be induced in recalcitrant woody genotypes by infection with Agrobacterium rhizogenes, and, in some cases, might also require exogenous auxin. The objective of the present study was to determine how agrobacteria trigger root formation in the stem of a recalcitrant woody microcutting, which cytological events result from the combined presence of infection and exogenous auxin, and which types of roots are induced by infection. Microcuttings of a recalcitrant walnut (Fuglans regia), infected or not with A. rhizogenes strain 1855, were cultured with either indolebutyric acid (IBA), IAA, or without exogenous hormones, to induce rhizogenesis. They were cytohistologically and ultrastructurally investigated at various times in culture. Southern blot and PCR analyses were performed to verify the frequency of transgenic, chimeric and bacterium-containing roots. The infection was sufficient per se to stimulate rhizogenesis. Rooting on the infected cuttings was enhanced by exogenous IBA, which accelerated and increased root meristemoid formation, in comparison with without hormone treatment. Meristemoids were organized both directly by the cambial cells and indirectly by the callus, and showed a pluricellular origin. Inter and intracellular bacteria were observed in the stem throughout the culture period (30 d). They were preferentially present in the vessels, and mainly in those showing polyphenol deposition. In the infected IAA-treated cultures, a high level of secondary xylem formation occurred instead of rhizogenesis. Nontransformed roots were preferentially produced by the infected cuttings treated with the auxins. Bacterium-containing and chimeric roots were produced by infected cuttings independently of the treatment. Thus, in a recalcitrant walnut, nontransformed root meristemoids are stimulated by combining infection and exogenous indolebutyric acid. Furthermore, the persistence of bacteria in the stem during the culture and the pluricellular origin of the meristemoids explain the presence of the bacterium-containing and chimeric roots

    Jasmonates, ethylene and brassinosteroids control adventitious and lateral rooting as stress avoidance responses to heavy metals and metalloids

    Get PDF
    Developmental and environmental signaling networks often converge during plant growth in response to changing conditions. Stress-induced hormones, such as jasmonates (JAs), can influence growth by crosstalk with other signals like brassinosteroids (BRs) and ethylene (ET). Nevertheless, it is unclear how avoidance of an abiotic stress triggers local changes in development as a response. It is known that stress hormones like JAs/ET and BRs can regulate the division rate of cells from the first asymmetric cell divisions (ACDs) in meristems, suggesting that stem cell activation may take part in developmental changes as a stress-avoidance-induced response. The root system is a prime responder to stress conditions in soil. Together with the primary root and lateral roots (LRs), adventitious roots (ARs) are necessary for survival in numerous plant species. AR and LR formation is affected by soil pollution, causing substantial root architecture changes by either depressing or enhancing rooting as a stress avoidance/survival response. Here, a detailed overview of the crosstalk between JAs, ET, BRs, and the stress mediator nitric oxide (NO) in auxin-induced AR and LR formation, with/without cadmium and arsenic, is presented. Interactions essential in achieving a balance between growth and adaptation to Cd and As soil pollution to ensure survival are reviewed here in the model species Arabidopsis and rice

    1,3-di(benzo[d]oxazol-5-yl)urea acts as either adventitious rooting adjuvant or xylogenesis enhancer in carob and pine microcuttings depending on the presence/absence of exogenous indole-3-butyric acid

    Get PDF
    Asexual propagation in Ceratonia siliqua L. (carob), species of economic value, is difficult because of adventitious rooting recalcitrance. In Pinus radiata adventitious rooting of hypocotyl cuttings is enhanced by two urea-derivatives, 1,3-di(benzo[d]oxazol-5-yl)urea (5-BDPU) and 1,3-di(benzo[d]oxazol-6-yl)urea (6-BDPU), combined with exogenous indole-3-butyric acid (IBA). The research was aimed to define the role of these urea-derivatives in adventitious root (AR) formation of carob, and to identify morphogenic roles induced in carob, but also in pine, a distantly-related forest species. In carob, 5-BDPU (10 μM) highly promoted AR formation in combination with IBA (1 μM) when applied for 3 days, followed by a transfer onto hormone free medium (HF) up to culture end (4 weeks). IBA alone (1 μM) was more effective than IBA + kinetin (Kin, 10 nM), whereas Kin alone and 5-BDPU alone were not AR-inductive. The histological analysis showed that the cambial cells initiated the ARs, and similar numbers of AR-primordia were visible at day 12, independently of the AR-inductive treatment (i.e., IBA, IBA + 5-BDPU, IBA + Kin). No cutting treated with Kin alone, and rare HF (±5-BDPU)-treated ones, showed AR-primordia at day 12. The number of AR-forming explants increased under IBA + 5-BDPU. By contrast, the cambial cells were stimulated to initiate deuteroxylem instead of ARs under 5-BDPU alone. The histological analysis in pine microcuttings treated with IBA and/or 5-BDPU at the same concentrations confirmed that 5-BDPU applied alone enhanced xylogenesis, highlighting that this urea-derivative exhibits a dual morphogenic role being involved in the switching between adventitious rooting and xylogenesis depending on the presence of exogenous auxin in both species

    Brassinosteroids interact with nitric oxide in the response of rice root systems to arsenic stress

    Get PDF
    Brassinosteroids (BRs), an emerging class of phytohormones, affect numerous plant physiological and metabolic processes and can improve plant defense systems to counteract metalloid phytotoxicity. Nitric oxide (NO), a reactive nitrogen species (RNS), behaves as a signalling molecule activating plant cellular responses to various environmental conditions. Brassinosteroids induce NO synthesis through nitrate reductase (NR) and NO synthase (NOS) activities. Arsenite and arsenate, inorganic forms of the metalloid arsenic (As), cause both soil pollution and many disorders in numerous plants, including important crops like rice, due to the oxidative stress generated by the imbalance between RNS and reactive oxygen species (ROS). Rice is very susceptible to As toxicity because both As availability and solubility are high in flooded paddy fields in many cultivated areas. The research aims to investigate the effects of BRs on the rice root systems exposed to 10-4 M Na2HAsO40.7 H2O [As(V)] or 2.5 × 10-5 M NaAsO2 [As(III)], highlighting the induced cyto-histological events and dissecting the NO role in the root response. A specific concentration (10-7 M) of 24-epibrassinolide (24-eBL), an exogenously applied BR, increases lateral root (LR) formation of more than 50% in the presence of As(III) or As(V). In addition, eBL attenuates the thickening of the cell walls induced by As in the outermost root cortical layers of LRs and in the adventitious roots (ARs) by reducing of ⁓ 50% the lignin deposition, while it restores the As(v)-altered NO levels by increasing OsNOS1 expression and the cellular NO distribution

    Cadmium tolerance and phytochelatin content of Arabidopsis seedlings over-expressing the phytochelatin synthase gene AtPCS1

    Get PDF
    Previous studies demonstrated that expression of the Arabidopsis phytochelatin (PC) biosynthetic gene AtPCS1 in Nicotiana tabacum plants increases the Cd tolerance in the presence of exogenous glutathione (GSH). In this paper, the Cd tolerance of Arabidopsis plants over-expressing AtPCS1 (AtPCSox lines) has been analysed and the differences between Arabidopsis and tobacco are shown. Based on the analysis of seedling fresh weight, primary root length, and alterations in root anatomy, evidence is provided that, at relatively low Cd concentrations, the Cd tolerance of AtPCSox lines is lower than the wild type, while AtPCS1 over-expressing tobacco is more tolerant to Cd than the wild type. At higher Cd concentrations, Arabidopsis AtPCSox seedlings are more tolerant to Cd than the wild type, while tobacco AtPCS1 seedlings are as sensitive as the wild type. Exogenous GSH, in contrast to what was observed in tobacco, did not increase the Cd tolerance of AtPCSox lines. The PC content in wild-type Arabidopsis at low Cd concentrations is more than three times higher than in tobacco and substantial differences were also found in the PC chain lengths. These data indicate that the differences in Cd tolerance and in its dependence on exogenous GSH between Arabidopsis and tobacco are due to species-specific differences in the endogenous content of PCs and GSH and may be in the relative abundance of PCs of different length
    corecore