3 research outputs found

    Early BCR-ABL1 kinetics are predictive of subsequent achievement of treatment-free remission in chronic myeloid leukemia

    No full text
    With treatment-free remission (TFR) rapidly becoming the ultimate goal of therapy in chronic myeloid leukemia (CML), there is a need to develop strategies to maximise sustained TFR by improving our understanding of its key determinants. Chronic phase CML patients attempting TFR were evaluated to identify the impact of multiple variables on the probability of sustained TFR. Early molecular response dynamics were included as a predictive variable, assessed by calculating the patient-specific halving time of BCR-ABL1 after commencing tyrosine kinase inhibitor (TKI) therapy. Overall, 115 patients attempted TFR and had ≥12 months follow-up. The probability of sustained TFR, defined as remaining in major molecular response off TKI therapy for 12 months, was 55%. The time taken for the BCR-ABL1 value to halve was the strongest independent predictor of sustained TFR: 80% in patients with a halving time of 21.85 days (last quartile) (P<.001). The e14a2 BCR-ABL1 transcript type and duration of TKI exposure before attempting TFR were also independent predictors of sustained TFR. However, the BCR-ABL1 value measured at 3 months of TKI was not an independent predictor of sustained TFR. A more rapid initial BCR-ABL1 decline after commencing TKI also correlated with an increased likelihood of achieving TFR eligibility. The association between sustained TFR and the time taken for BCR-ABL1 to halve after commencing TKI was validated using an independent dataset. These data support the critical importance of the initial kinetics of BCR-ABL1 decline for long-term outcomes.Naranie Shanmuganathan, Ilaria S. Pagani, David M. Ross, Sahee Park, Agnes S.M. Yong, Jodi A. Braley, Haley K. Altamura, Devendra K. Hiwase, David T. Yeung, Dong-Wook Kim, Susan Branford, Timothy P. Hughe

    Recent advances in psychoneuroimmunology: inflammation in psychiatric disorders

    No full text
    Psychiatric disorders are common and complex and their precise biological underpinnings remain elusive. Multiple epidemiological, molecular, genetic and gene expression studies suggest that immune system dysfunction may contribute to the risk for developing psychiatric disorders including schizophrenia, bipolar disorder, and major depressive disorder. However, the precise mechanisms by which inflammation-related events confer such risk are unclear. In this review, we examine the peripheral and central evidence for inflammation in psychiatric disorders and the potential molecular mechanisms implicated including inhibition of neurogenesis, apoptosis, the HPA-axis, the role of brain-derived neurotrophic factor and the interplay between the glutamatergic, dopaminergic and serotonergic neurotransmitter systems

    Recent advances in psychoneuroimmunology: Inflammation in psychiatric disorders

    No full text
    corecore