7 research outputs found
Using a commercially available app for the self-management of hypertension : acceptance and usability study in Saudi Arabia
Background:
The use of smartphone apps to assist in the self-management of hypertension is becoming increasingly common, but few commercially available apps have the potential to be effective along with adequate security and privacy measures in place. In a previous study, we identified 5 apps that are potentially effective and safe, and based on the preferences of doctors and patients, one (Cora Health) was selected as the most suitable app for use in a Saudi context. However, there is currently no evidence of its usability and acceptance among potential users. Indeed, there has been little research into the usability and acceptance of hypertension apps in general, and less research considers this in the Gulf Region.
Objective:
This study aims to evaluate the acceptance and usability of the selected app in the Saudi context.
Methods:
This study used a mixed methods approach with 2 studies: a usability test involving patients in a controlled setting performing predefined tasks and a real-world usability study where patients used the app for 4 weeks. In the usability test, participants were asked to think aloud while performing the tasks, and an observer recorded the number of tasks they completed. At the end of the real-world pilot study, participants were interviewed, and the mHealth App Usability Questionnaire was completed. Descriptive statistics were used to analyze quantitative data, and thematic analysis was used to analyze qualitative data.
Results:
In total, 10 patients completed study 1. The study found that app usability was moderate and that participants needed some familiarization time before they could use the app proficiently. Some usability issues were revealed, related to app accessibility and navigation, and a few tasks remained uncompleted by most people. A total of 20 patients completed study 2, with a mean age of 51.6 (SD 11.7) years. Study 2 found that the app was generally acceptable and easy to use, with some similar usability issues identified. Participants stressed the importance of practice and training to use it more easily and proficiently. Participants had a good engagement level with 48% retention at the end of study 2, with most participants’ engagement being classed as meaningful. The most recorded data were blood pressure, followed by stress and medication, and the most accessed feature was viewing graphs of data trends.
Conclusions:
This study shows that a commercially available app can be usable and acceptable in the self-management of hypertension but also found a considerable number of possibilities for improvement, which needs to be considered in future app development. The results show that there is potential for a commercially available app to be used in large-scale studies of hypertension self-management if suggestions for improvements are addressed
Solar PV Penetration Scenarios for a University Campus in KSA
The Kingdom of Saudi Arabia (KSA) is committed to transition its fossil fuel-driven electricity generation to that from renewable energy technologies, such as solar photovoltaic (PV) and wind. The need to reduce greenhouse gas emissions has led it to announce an ambitious target of 40 GW of PV power capacity by 2030. The deployment of such a capacity needs to be augmented with analyses to overcome the challenges faced in terms of the technical capability of the country. This work contributes to this goal by investigating the utilisation of solar photovoltaic PV systems to supply medium-size entities such as universities with clean power, displacing the current fossil fuel power supply. Currently, such considerations are not fully addressed in KSA. The study used the University of Jeddah campus electrical load profile, taking into account future power needs. The methodology encompassed modelling the installation of multi-MW PV systems for the university by considering weather conditions, actual university consumption, load segregation, and economics under different development scenarios informed by surveys with decision makers at the university. The results showed that air conditioning loads alone were responsible for 79% of the campus electrical load and that a 4.5 MW PV system is able to supply half of the total campus annual electrical energy consumption of the year of 2019. The optimum scenario showed that utilising grid-connected PVs would decrease the total cost of electricity over the next two decades by 28 to 35 percent and would result in halving the current campus carbon emissions. The analysis concludes that the business-as-usual case is no longer the cheapest option for the campus
Solar PV penetration scenarios for a university campus in KSA
The Kingdom of Saudi Arabia (KSA) is committed to transition its fossil fuel-driven electricity generation to that from renewable energy technologies, such as solar photovoltaic (PV) and wind. The need to reduce greenhouse gas emissions has led it to announce an ambitious target of 40 GW of PV power capacity by 2030. The deployment of such a capacity needs to be augmented with analyses to overcome the challenges faced in terms of the technical capability of the country. This work contributes to this goal by investigating the utilisation of solar photovoltaic PV systems to supply medium-size entities such as universities with clean power, displacing the current fossil fuel power supply. Currently, such considerations are not fully addressed in KSA. The study used the University of Jeddah campus electrical load profile, taking into account future power needs. The methodology encompassed modelling the installation of multi-MW PV systems for the university by considering weather conditions, actual university consumption, load segregation, and economics under different development scenarios informed by surveys with decision makers at the university. The results showed that air conditioning loads alone were responsible for 79% of the campus electrical load and that a 4.5 MW PV system is able to supply half of the total campus annual electrical energy consumption of the year of 2019. The optimum scenario showed that utilising grid-connected PVs would decrease the total cost of electricity over the next two decades by 28 to 35 percent and would result in halving the current campus carbon emissions. The analysis concludes that the business-as-usual case is no longer the cheapest option for the campus.</p
The differential impacts of the spatiotemporal vertical and horizontal expansion of megacity Dhaka on ecosystem services
The relationship between ecosystem services (ES) and urbanization is crucial for sustainable development. Rapid urbanization threatens the natural capital of Dhaka city, affecting the delivery of ES through changes in land use and land cover. We used vertical growth (VG), nighttime light data (NTL), and population density (PD) as standard urbanization indicators alongside technomass, a three-dimensional indicator, to evaluate the degree of urbanization as a continuous spatial process. We modeled the spatiotemporal relationships between urbanization degrees and ES using the ecosystem service value (ESV) dataset applied in Dhaka, with regional modified value coefficients. Results from the geographically weighted regression (GWR) model showed that technomass emerged as a more appropriate indicator to analyze urbanization for ESV analysis (r > 0.61), followed by NTL (r > 0.56), and PD (r > 0.54) across all zones from 2000 to 2021. We observed a 68.34% decrease in net ESV, equivalent to $245.88 million (in 2021 USD), from 2000 to 2021. This decline was driven by the conversion of water bodies (−70.93%), agricultural land (−60.08%), forest and vegetation (−70.18%) into urban built-up areas and other uses. In contrast, net technomass increased by 243.11% due to the city's vertical growth. The digital building height (DBH) model revealed that the built-up area had expanded by 94.94% over the study period, with an average annual growth rate of 4.52%. Significant correlations (p  0.90), along with a 440.47% growth in technomass. Our results provide insights into the impact of urbanization on ES, particularly at the regional scale, and have highlighted the importance of integrating VG and technomass for urbanization analysis. These findings could be useful for environmental management, policymaking, spatial planning, and coordinating future ES protection and urban development
Modeling relation among implementing AI-based drones and sustainable construction project success
Project failure is a persistent challenge in the construction industry, rendering it one of the most demanding sectors. Many obstacles, including safety concerns, quality management issues, environmental preservation challenges, economic sustainability, privacy constraints, and legal regulations, weigh heavily on construction projects. However, a beacon of hope emerges in AI-powered drones capable of surmounting these challenges and paving the path to resounding project success. This study employed diverse methodologies, engaging subject-matter experts through interviews and conducting pilot and primary surveys. Our analytical arsenal featured Exploratory Factor Analysis (EFA) for the pilot survey and Structural Equation Modelling (SEM) for the primary survey. Our research revolves around a singular mission: elevating building project success by dismantling the barriers that have impeded the widespread adoption of AI-driven drones in construction. The study’s verdict is clear: privacy and legal constraints, coupled with economic and sustainability challenges, alongside human resource management dilemmas, constitute the formidable triumvirate obstructing the ubiquitous embrace of drones in construction. Yet, the impact of breaching these barriers reverberates far beyond overcoming these hurdles. It cascades into public health and safety, environmental conservation, quality management, and economic sustainability, culminating in an amalgam of enhanced Building Project Success. The implications of our findings are profound for the construction industry. They beckon the sector to confront and surmount the legal and regulatory barriers to adopting AI-based drones. A clarion call to invest in human resources to empower technology integration resounds. And, perhaps most importantly, it beckons the industry to embrace the profound economic and sustainability advantages of embracing these cutting-edge technologies. Furthermore, our study underscores that adopting AI-powered drones in construction is not merely about project success; it catalyzes fostering public health, safeguarding the environment, ensuring top-tier quality management, and fortifying economic sustainability. These interwoven facets illuminate the broader canvas of drone technology’s transformative role in construction