52 research outputs found
Predictive analytics framework for electronic health records with machine learning advancements : optimising hospital resources utilisation with predictive and epidemiological models
The primary aim of this thesis was to investigate the feasibility and robustness of predictive machine-learning models in the context of improving hospital resources’ utilisation with data- driven approaches and predicting hospitalisation with hospital quality assessment metrics such as length of stay. The length of stay predictions includes the validity of the proposed methodological predictive framework on each hospital’s electronic health records data source. In this thesis, we relied on electronic health records (EHRs) to drive a data-driven predictive inpatient length of stay (LOS) research framework that suits the most demanding hospital facilities for hospital resources’ utilisation context. The thesis focused on the viability of the methodological predictive length of stay approaches on dynamic and demanding healthcare facilities and hospital settings such as the intensive care units and the emergency departments. While the hospital length of stay predictions are (internal) healthcare inpatients outcomes assessment at the time of admission to discharge, the thesis also considered (external) factors outside hospital control, such as forecasting future hospitalisations from the spread of infectious communicable disease during pandemics. The internal and external splits are the thesis’ main contributions. Therefore, the thesis evaluated the public health measures during events of uncertainty (e.g. pandemics) and measured the effect of non-pharmaceutical intervention during outbreaks on future hospitalised cases. This approach is the first contribution in the literature to examine the epidemiological curves’ effect using simulation models to project the future hospitalisations on their strong potential to impact hospital beds’ availability and stress hospital workflow and workers, to the best of our knowledge. The main research commonalities between chapters are the usefulness of ensembles learning models in the context of LOS for hospital resources utilisation. The ensembles learning models anticipate better predictive performance by combining several base models to produce an optimal predictive model. These predictive models explored the internal LOS for various chronic and acute conditions using data-driven approaches to determine the most accurate and powerful predicted outcomes. This eventually helps to achieve desired outcomes for hospital professionals who are working in hospital settings
Location estimation in smart homes setting with RFID systems
Indoor localisation technologies are a core component of Smart Homes. Many applications within Smart Homes benefit from localisation technologies to determine the locations of things, objects and people. The tremendous characteristics of the Radio Frequency Identification (RFID) systems have become one of the enabler technologies in the Internet of Things (IOT) that connect objects and things wirelessly. RFID is a promising technology in indoor positioning that not only uniquely identifies entities but also locates affixed RFID tags on objects or subjects in stationary and real-time. The rapid advancement in RFID-based systems has sparked the interest of researchers in Smart Homes to employ RFID technologies and potentials to assist with optimising (non-) pervasive healthcare systems in automated homes.
In this research localisation techniques and enabled positioning sensors are investigated. Passive RFID sensors are used to localise passive tags that are affixed to Smart Home objects and track the movement of individuals in stationary and real-time settings. In this study, we develop an affordable passive localisation platform using inexpensive passive RFID sensors. To fillful this aim, a passive localisation framework using minimum tracking resources (RFID sensors) has been designed. A localisation prototype and localisation application that examined the affixed RFID tag on objects to evaluate our proposed locaisation framework was then developed. Localising algorithms were utilised to achieve enhanced accuracy of localising one particular passive tag which that affixed to target objects.
This thesis uses a general enough approach so that it could be applied more widely to other applications in addition to Health Smart Homes. A passive RFID localising framework is designed and developed through systematic procedures. A localising platform is built to test the proposed framework, along with developing a RFID tracking application using Java programming language and further data analysis in MATLAB. This project applies localisation procedures and evaluates them experimentally. The experimental study positively confirms that our proposed localisation framework is capable of enhancing the accuracy of the location of the tracked individual. The low-cost design uses only one passive RFID target tag, one RFID reader and three to four antennas
Forecasting Economic Growth and Movements with Wavelet Transform and ARIMA Model
This study uses historical data and modern statistical models to forecast future Gross Domestic Product (GDP) in Jordan. The Wavelet Transformation model (WT) and Autoregressive Integrated Moving Average (ARIMA) model were applied to the time series data and yielded a best-fitting result of (2,1,1) for estimating GDP between 2022-2031. The study concludes that GDP is expected to increase with a positive growth rate of around 3.22%, and recommends government agencies to monitor GDP, strengthen existing policies, and adopt necessary economic reforms to support growth. Additionally, the private sector is encouraged to enhance production tools to achieve economic growth that benefits all sectors of society
RFID Localisation For Internet Of Things Smart Homes: A Survey
The Internet of Things (IoT) enables numerous business opportunities in
fields as diverse as e-health, smart cities, smart homes, among many others.
The IoT incorporates multiple long-range, short-range, and personal area
wireless networks and technologies into the designs of IoT applications.
Localisation in indoor positioning systems plays an important role in the IoT.
Location Based IoT applications range from tracking objects and people in
real-time, assets management, agriculture, assisted monitoring technologies for
healthcare, and smart homes, to name a few. Radio Frequency based systems for
indoor positioning such as Radio Frequency Identification (RFID) is a key
enabler technology for the IoT due to its costeffective, high readability
rates, automatic identification and, importantly, its energy efficiency
characteristic. This paper reviews the state-of-the-art RFID technologies in
IoT Smart Homes applications. It presents several comparable studies of RFID
based projects in smart homes and discusses the applications, techniques,
algorithms, and challenges of adopting RFID technologies in IoT smart home
systems.Comment: 18 pages, 2 figures, 3 table
A Classifier to Detect Profit and Non Profit Websites Upon Textual Metrics for Security Purposes
Currently, most organizations have a defense system to protect their digital communication network against cyberattacks. However, these defense systems deal with all network traffic regardless if it is from profit or non-profit websites. This leads to enforcing more security policies, which negatively affects network speed. Since most dangerous cyberattacks are aimed at commercial websites, because they contain more critical data such as credit card numbers, it is better to set up the defense system priorities towards actual attacks that come from profit websites. This study evaluated the effect of textual website metrics in determining the type of website as profit or nonprofit for security purposes. Classifiers were built to predict the type of website as profit or non-profit by applying machine learning techniques on a dataset. The corpus used for this research included profit and non-profit websites. Both traditional and deep machine learning techniques were applied. The results showed that J48 performed best in terms of accuracy according to its outcomes in all cases. The newly built models can be a significant tool for defense systems of organizations, as they will help them to implement the necessary security policies associated with attacks that come from both profit and non-profit websites. This will have a positive impact on the security and efficiency of the network
COVID-19 global risk : expectation vs. reality
Background and Objective: COVID-19 has engulfed the entire world, with many countries struggling to contain the pandemic. In order to understand how each country is impacted by the virus compared with what would have been expected prior to the pandemic and the mortality risk on a global scale, a multi-factor weighted spatial analysis is presented. Method: A number of key developmental indicators across three main categories of demographics, economy, and health infrastructure were used, supplemented with a range of dynamic indicators associated with COVID-19 as independent variables. Using normalised COVID-19 mortality on 13 May 2020 as a dependent variable, a linear regression (N = 153 countries) was performed to assess the predictive power of the various indicators. Results: The results of the assessment show that when in combination, dynamic and static indicators have higher predictive power to explain risk variation in COVID-19 mortality compared with static indicators alone. Furthermore, as of 13 May 2020 most countries were at a similar or lower risk level than what would have been expected pre-COVID, with only 44/153 countries experiencing a more than 20% increase in mortality risk. The ratio of elderly emerges as a strong predictor but it would be worthwhile to consider it in light of the family makeup of individual countries. Conclusion: In conclusion, future avenues of data acquisition related to COVID-19 are suggested. The paper concludes by discussing the ability of various factors to explain COVID-19 mortality risk. The ratio of elderly in combination with the dynamic variables associated with COVID-19 emerge as more significant risk predictors in comparison to socio-economic and demographic indicators
Global and temporal COVID-19 risk evaluation
The COVID-19 pandemic has caused unprecedented crisis across the world, with many countries struggling with the pandemic. In order to understand how each country is impacted by the virus and assess the risk on a global scale we present a regression based analysis using two pre-existing indexes, namely the Inform and Infectious Disease Vulnerability Index, in conjunction with the number of elderly living in the population. Further we introduce a temporal layer in our modeling by incorporating the stringency level employed by each country over a period of 6 time intervals. Our results show that the indexes and level of stringency are not ideally suited for explaining variation in COVID-19 risk, however the ratio of elderly in the population is a stand out indicator in terms of its predictive power for mortality risk. In conclusion, we discuss how such modeling approaches can assist public health policy
Exoskeletons with virtual reality, augmented reality and gamification for stroke patients' rehabilitation : systematic review
Background: Robot-assisted therapy has become a promising technology in the field of rehabilitation of post-stroke patients with motor disorders. Motivation during the rehabilitation process is a top priority for a majority of stroke survivors. With the advancement in technology, there has been the introduction of Virtual Reality, Augmented Reality, customizable games or a combination thereof that aid robotic therapy in retaining or increasing the interests of patients to keep performing the exercises. However, there are gaps in evidence regarding the transition from clinical rehabilitation to home-based therapy and it calls for an updated synthesis of literature showcasing this trend. The present review proposes a categorization of these studies according to technologies used by them and also details research in upper limb and lower limb applications.
Objective: The goal of this work was to review the practices and technologies implemented for the rehabilitation of post-stroke patients. It aims to assess the effectiveness of exoskeleton robotics in conjunction with any of the three technologies, Virtual Reality, Augmented Reality or Gamification for improving activity and participation in post-stroke survivors.
Methods: A systematic search of the literature on exoskeleton robotics applied with any of the three technologies, Virtual Reality, Augmented Reality or Gamification, was performed in the databases namely; MEDLINE (Medical Literature Analysis and Retrieval System Online, or MEDLARS Online), EMBASE (Excerpta Medica database), Science Direct & The Cochrane Library. Exoskeleton based studies that did not include any VR, AR or gamification elements were excluded and publications from the year 2010 to 2017 were included. Results in the form of improvements in patients were also recorded and taken into consideration in finding the effectiveness of therapy on patients.
Results: Thirty studies were identified based on the inclusion criteria that included randomised controlled trials as well as explorative research pieces. There was a total of around 385 participants across the studies. Use of technologies such as Virtual Reality/Augmented Reality/Gamification based Exoskeletons are capable of filling the transition from clinical to home-based settings. Our analysis showed that there were in general improvements in the motor deficiency for patients using the novel interfacing techniques with exoskeletons. This categorization of studies helps in understanding the scope of rehabilitation therapies that can be successfully arranged for home-based rehabilitation.
Conclusions: Future studies are necessary to explore various types of customizable games required to retain or increase the motivation of patients going through the therapy individually
A classifier to detect informational vs. non-informational heart attack tweets
Social media sites are considered one of the most important sources of data in many fields, such as health, education, and politics. While surveys provide explicit answers to specific questions, posts in social media have the same answers implicitly occurring in the text. This research aims to develop a method for extracting implicit answers from large tweet collections, and to demonstrate this method for an important concern: the problem of heart attacks. The approach is to collect tweets containing “heart attack” and then select from those the ones with useful information.
Informational tweets are those which express real heart attack issues, e.g., “Yesterday morning, my grandfather had a heart attack while he was walking around the garden.” On the other hand, there are non-informational tweets such as “Dropped my iPhone for the first time and almost had a heart
attack.” The starting point was to manually classify around 7000 tweets as either informational (11%) or non-informational (89%), thus yielding a labeled dataset to use in devising a machine learning classifier that can be applied to our large collection of over 20 million tweets. Tweets were
cleaned and converted to a vector representation, suitable to be fed into different machine-learning algorithms: Deep neural networks, support vector machine (SVM), J48 decision tree and naĂŻve Bayes. Our experimentation aimed to find the best algorithm to use to build a high-quality classifier. This involved splitting the labeled dataset, with 2/3 used to train the classifier and 1/3 used for evaluation besides cross-validation methods. The deep neural network (DNN) classifier obtained the highest accuracy (95.2%). In addition, it obtained the highest F1-scores with (73.6%) and (97.4%) for
informational and non-informational classes, respectively
Application of artificial intelligence for screening COVID-19 patients using digital images : meta-analysis
Background: The COVID-19 outbreak has spread rapidly and hospitals are overwhelmed with COVID-19 patients. While analysis of nasal and throat swabs from patients is the main way to detect COVID-19, analyzing chest images could offer an alternative method to hospitals, where health care personnel and testing kits are scarce. Deep learning (DL), in particular, has shown impressive levels of performance when analyzing medical images, including those related to COVID-19 pneumonia.
Objective: The goal of this study was to perform a systematic review with a meta-analysis of relevant studies to quantify the performance of DL algorithms in the automatic stratification of COVID-19 patients using chest images. Methods: A search strategy for use in PubMed, Scopus, Google Scholar, and Web of Science was developed, where we searched for articles published between January 1 and April 25, 2020. We used the key terms “COVID19,” or “coronavirus,” or “SARS-CoV-2,” or “novel corona,” or “2019-ncov,” and “deep learning,” or “artificial intelligence,” or “automatic detection.” Two authors independently extracted data on study characteristics, methods, risk of bias, and outcomes. Any disagreement between them was resolved by consensus. Results: A total of 16 studies were included in the meta-analysis, which included 5896 chest images from COVID19 patients. The pooled sensitivity and specificity of the DL models in detecting COVID-19 were 0.95 (95% CI 0.94-0.95) and 0.96 (95% CI 0.96-0.97), respectively, with an area under the receiver operating characteristic curve of 0.98. The positive likelihood, negative likelihood, and diagnostic odds ratio were 19.02 (95% CI 12.83-28.19), 0.06 (95% CI 0.04-0.10), and 368.07 (95% CI 162.30-834.75), respectively. The pooled sensitivity and specificity for distinguishing other types of pneumonia from COVID-19 were 0.93 (95% CI 0.92-0.94) and 0.95 (95% CI 0.94-0.95), respectively. The performance of radiologists in detecting COVID-19 was lower than that of the DL models; however, the performance of junior radiologists was improved when they used DL-based prediction tools. Conclusions: Our study findings show that DL models have immense potential in accurately stratifying COVID-19 patients and in correctly differentiating them from patients with other types of pneumonia and normal patients. Implementation of DL-based tools can assist radiologists in correctly and quickly detecting COVID-19 and, consequently, in combating the COVID-19 pandemic
- …