2 research outputs found

    An innovative network intrusion detection system (NIDS): Hierarchical deep learning model based on Unsw-Nb15 dataset

    Get PDF
    With the increasing prevalence of network intrusions, the development of effective network intrusion detection systems (NIDS) has become crucial. In this study, we propose a novel NIDS approach that combines the power of long short-term memory (LSTM) and attention mechanisms to analyze the spatial and temporal features of network traffic data. We utilize the benchmark UNSW-NB15 dataset, which exhibits a diverse distribution of patterns, including a significant disparity in the size of the training and testing sets. Unlike traditional machine learning techniques like support vector machines (SVM) and k-nearest neighbors (KNN) that often struggle with limited feature sets and lower accuracy, our proposed model overcomes these limitations. Notably, existing models applied to this dataset typically require manual feature selection and extraction, which can be time-consuming and less precise. In contrast, our model achieves superior results in binary classification by leveraging the advantages of LSTM and attention mechanisms. Through extensive experiments and evaluations with state-of-the-art ML/DL models, we demonstrate the effectiveness and superiority of our proposed approach. Our findings highlight the potential of combining LSTM and attention mechanisms for enhanced network intrusion detection

    Neural Network Prediction Model to Explore Complex Nonlinear Behavior in Dynamic Biological Network

    No full text
    Organism network systems provide a biological data with high complex level. Besides, these data reflect the complex activities in organisms that identifies nonlinear behavior as well. Hence, mathematical modelling methods such as Ordinary Differential Equations model (ODE's) are becoming significant tools to predict, and expose implied knowledge and data. Unfortunately, the aforementioned approaches face some of cons such as the scarcity and the vagueness in the biological knowledge to expect the protein concentrations measurements. So, the main object of this research presents a computational model such as a neural Feed Forward Network model using Back Propagation algorithm to engage with imprecise and missing biological knowledge to provide more insight about biological systems in organisms. Therefore, the model predicts protein concentration and illustrates the nonlinear behavior for the biological dynamic behavior in precise form. Also, the desired results are matched with recent ODE's model and it provides precise results in simpler form than ODEs
    corecore