2 research outputs found

    A hybrid camera- and ultrasound-based approach for needle localization and tracking using a 3D motorized curvilinear ultrasound probe

    Get PDF
    Three-dimensional (3D) motorized curvilinear ultrasound probes provide an effective, low-cost tool to guide needle interventions, but localizing and tracking the needle in 3D ultrasound volumes is often challenging. In this study, a new method is introduced to localize and track the needle using 3D motorized curvilinear ultrasound probes. In particular, a low-cost camera mounted on the probe is employed to estimate the needle axis. The camera-estimated axis is used to identify a volume of interest (VOI) in the ultrasound volume that enables high needle visibility. This VOI is analyzed using local phase analysis and the random sample consensus algorithm to refine the camera-estimated needle axis. The needle tip is determined by searching the localized needle axis using a probabilistic approach. Dynamic needle tracking in a sequence of 3D ultrasound volumes is enabled by iteratively applying a Kalman filter to estimate the VOI that includes the needle in the successive ultrasound volume and limiting the localization analysis to this VOI. A series of ex vivo animal experiments are conducted to evaluate the accuracy of needle localization and tracking. The results show that the proposed method can localize the needle in individual ultrasound volumes with maximum error rates of 0.7 mm for the needle axis, 1.7° for the needle angle, and 1.2 mm for the needle tip. Moreover, the proposed method can track the needle in a sequence of ultrasound volumes with maximum error rates of 1.0 mm for the needle axis, 2.0° for the needle angle, and 1.7 mm for the needle tip. These results suggest the feasibility of applying the proposed method to localize and track the needle using 3D motorized curvilinear ultrasound probes

    System-Level Analysis and Design of Safety-Critical Cyber Physical Systems

    Get PDF
    The reduction in size and cost of hardware together with the accelerating innovation and advancement in sensor and computational technologies have opened the door for cyber physical systems into all types of applications. While most early systems involved varying degrees of human involvement, the various success stories are encouraging designers to develop cyber physical systems for autonomous control. The trustworthiness of a cyber-physical system is essential for it to be qualified for utilization in most real-life deployments. This is especially critical for systems that deal with precious human lives. which can be engaged directly as in biomedical systems or indirectly as in automotive systems. Although use-cases for biomedical and automotive systems are considered, the proposed generalized framework can be used to analyze the safety of various cyber-physical systems. These safety-critical systems can be investigated using both experimental testing and model-based verification. Accurate models have the potential to permit investigating the system behavior under abnormal scenarios. Also, appropriate modeling can speed-up the development process by evaluating candidate designs at an early stage of the design cycle. Model-based verification can be conducted using the less-exhaustive simulation testing or the resources-greedy model checking. As a trade-off, statistical model checking bears a feasible approach where statistical guarantees can be examined with a specific level of confidence. This research addresses the problem of utilizing accurate system-level models to analyze and design safety-critical cyber-physical systems. The behavioral descriptions of cyber physical systems are modelled by constructing equivalent formal models. These system-level models are used to conduct statistical model checking to verify properties written using metric interval temporal logic and to provide statistical guarantees on the system safety. This approach is applied on biomedical and automotive systems to verify their safety with consideration for some distortions resulting from unintentional or intentional sources. The proposed verification approach enlightens the development process by providing feedback that can help elect the designs. Moreover, new robust and safe control techniques are proposed to enhance the safety of a closed-loop glucose controller system. Also, a systematic approach is proposed for safety analysis of cyber physical systems. This approach processes systems described using SysML diagrams and applies a new proposed automatic algorithm to construct equivalent formal models. This research work is a step towards bridging the gap between system-level models and formal models so that analysis can be conducted efficiently to enhance the safety and robustness of cyber-physical systems
    corecore