3 research outputs found
Students Performance Prediction in Online Courses Using Machine Learning Algorithms
Advances in Information and Communications Technology (ICT) have increased the growth of Massive open online courses (MOOCs) applied in distance learning environments. Various tools have been utilized to deliver interactive content including pictures, figures, and videos that can motivate the learners to build new cognitive skills. High ranking universities have adopted MOOCs as an efficient dashboard platform where learners from around the world can participate in such courses. The students learning progress is evaluated by using set computer-marked assessments. In particular, the computer gives immediate feedback to the student once he or she completes the online assessmentsThe researchers claim that student success rate in an online course can be related to their performance at the previous session in addition to the level of engagement. Insufficient attention has been paid by literature to evaluate whether student performance and engagement in the prior assessments could affect student achievement in the next assessmentsIn this paper, two predictive models have been designed namely students’ assessments grades and final students’ performance. The models can be used to detect the factors that influence students’ learning achievement in MOOCs. The result shows that both models gain feasible and accurate results. The lowest RSME gain by RF acquire a value of 8.131 for students assessments grades model while GBM yields the highest accuracy in final students’ performance, an average value of 0.086 was achieved
The Application of Gaussian Mixture Models for the Identification of At-Risk Learners in Massive Open Online Courses
With high learner withdrawal rates in the setting of MOOC plat-forms, the early identification of at risk student groups has be-come increasingly important. Although many prior studies con-sider the dropout issue in form of a sequence classification prob-lem, such works address only a limited set of behavioral dynamics, typically recorded as sequance of weekly interval, neglecting important contextual factors such as assignment deadlines that may be important components of student latent engagement. In this paper we therefore aim to investigate the use of Gaussian Mixture Models for the incorporation such im-portant dynamics, providing an analytical assessment of the in-fluence of latent engagement on students and their subsequent risk of leaving the course. Additionally, linear regression and , k- nearest neighbors classifiers were used to provide a performance comparison. The features used in the study were constructed from student behavioral records, capturing activity over time, which were subsequently organized into six time intervals, corre-sponding to assignment submission dates. Results obtained from the classification procedure yielded an F1-Measure of 0.835 for the Gaussian Mixture Model, indicating that such an approach holds promise for the identification of at risk students within the MOOC setting
A risk model for assessing exposure factors influence oil price fluctuations
The impact of oil price volatility on the global economy is considerable. However, the uncertainty of crude oil prices is affected by many risk factors. Several prior studies have examined the factors that impact oil price fluctuations, but these methods are unable to indicate their dynamic non-fundamental factors. To address this issue, we propose a risk model inspired by the Mean-Variance Portfolio theory. The model can automatically construct optimal portfolios that seek to maximize returns with the lowest level of risk without needing human intervention. The results demonstrate a significant asymmetric cointegrating correlation between oil price volatility and non-fundamental factors