59 research outputs found

    Maximum Middle Jurassic transgression in East Greenland: evidence from new ammonite finds, Bjørnedal, Traill Ø

    Get PDF
    A Middle – lower Upper Jurassic sandstone-dominated succession, more than 550 m thick, with mudstone intercalations in the middle part is exposed in Bjørnedal on Traill Ø, North-East Greenland. A number of ammonite assemblages have been found, mainly in the mudstones. They indicate the presence of the Lower Callovian Cadoceras apertum and C. nordenskjoeldi Chronozones. The mudstones represent northern wedges of the Fossilbjerget Formation hitherto known only from Jameson Land to the south. In Bjørnedal they interfinger with sandstones of the Pelion and Olympen Formations. The presence of the Fossilbjerget Formation in this region indicates complete drowning of the Middle Jurassic sandstone-dominated Pelion Formation during maximum Middle Jurassic transgression. A new species, Kepplerites tenuifasciculatus, is described in the appendix by J.H. Callomon. The holotype and paratype are from Jameson Land, East Greenland, but the species is also found in Bjørnedal, Traill Ø, North-East Greenland

    Jurassic syn-rift sedimentation on a seawards-tilted fault block, Traill Ø, North-East Greenland

    Get PDF
    Middle–Late Jurassic rifting in East Greenland was marked by westwards tilting of wide fault blocks bounded by major N–S-trending east-dipping synthetic faults. The syn-rift successions thicken westwards towards the faults and shallow marine sandstones show mainly southwards axial transport directions. An exception to this general pattern is found in south-east Traill Ø, which constitutes the E-tilted Bjørnedal Block, which is bounded to the west by the westwards-dipping antithetic Vælddal Fault. The stratigraphic development of the Jurassic succession on this block shows important differences to the adjacent areas reflecting a different tectonic development. Shallow marine sand seems initially to have filled accommodation space of the immediately adjacent block to the west. This block subsequently acted as a bypass area and much of the sediment was spilled eastwards onto the hangingwall of the east-dipping Bjørnedal Block. The succession on the Bjørnedal Block shows an eastwards proximal–distal decrease in sandstone– mudstone ratio, reflecting increasing water depth and progressive under-filling of the subbasin towards the east in agreement with the dip direction of the fault block. The transverse, mainly south-eastwards palaeocurrents, the eastwards increase in water depths and decrease in sandstone–mudstone ratio on the Bjørnedal Block are at variance with the standard picture of west-tilted blocks with southwards-directed palaeocurrents and decrease in grain size. Earlier palaeogeographic reconstructions have to be modified to account for the east-dipping hangingwall and different stratigraphic development of the area. The sea was thus open towards the east and there is no direct indication of a barrier or shoal east of Traill Ø

    The Rødryggen-1 and Brorson Halvø-1 fully cored boreholes (Upper Jurassic – Lower Cretaceous), Wollaston Forland, North-East Greenland – an introduction

    Get PDF
    Two fully cored boreholes, the Rødryggen-1 and the Brorson Halvø-1, were drilled in Wollaston Forland, North-East Greenland, in 2009 and 2010, respectively. The objective was to test the stratigraphic development of the Upper Jurassic – Lower Cretaceous mud-dominated succession in two different settings within the same fault block of a developing half-graben: centrally (Rødryggen-1 borehole) and near the uplifted crest of the rotating fault block (Brorson Halvø-1 borehole). The drilled deposits are equivalent to the principal petroleum source-rock sequence of the petroliferous basins of North-West Europe, Siberia, and basins off eastern Canada and provide a new record of an important phase of marine deoxygenation in the proto-North Atlantic region

    Organic geochemistry of an Upper Jurassic – Lower Cretaceous mudstone succession in a narrow graben setting, Wollaston Forland Basin, North-East Greenland

    Get PDF
    The Oxfordian–Ryazanian was a period of widespread deposition of marine organic-rich mudstones in basins formed during the early phases of the rifting that heralded the formation of the present-day North Atlantic. Occasionally, uninterrupted deposition prevailed for 20 million years or more. Today, mudstones of this time interval are found on the shelves bordering the North Atlantic and adjacent areas from Siberia to the Netherlands. Here, we report data on two fully cored boreholes from Wollaston Forland (North-East Greenland, approx. 74° N), which represent an uninterrupted succession from the upper Kimmeridgian to the Hauterivian. The boreholes record basin development at two different positions within an evolving halfgraben, located at the margin of the main rift, and thus partially detached from it. Although the overall depositional environment remained an oxygen-restricted deep-shelf setting, rifting-related changes can be followed through the succession. The Kimmeridgian was a period of eustatic highstand and records the incipient rifting with a transgressive trend straddling the transition to the lower Volgian by a gradual change from deposits with high levels of total organic carbon (TOC) and kerogen rich in allochthonous organic matter to deposits with lower TOC and a higher proportion of autochthonous organic matter. This is followed by a slight regressive trend with lower TOC and increased proportions of allochthonous organic matter until rifting culminated in the middle Volgian–Ryazanian, indicated by increasing autochthonous organic matter and higher TOC, which prevailed until basin ventilation occurred towards the end of the Ryazanian. The properties of the reactive kerogen fraction remained rather stable irrespective of TOC, underlining the effect of terrigenous matter input for TOC. These variations are also captured by biological markers and stable carbon isotopes. The deposits are very similar to equivalent successions elsewhere in the proto-North Atlantic region, albeit the proportion of terrigenous kerogen is greater

    Standardizing Slimness: How Body Weight Quantified Beauty in the Netherlands, 1870–1940

    Get PDF
    This chapter investigates the history of one of the most powerful quantitative beauty standards: weight. The chapter argues that weight is neither a natural nor a neutral standard for the beauty ideals of slimness and fatness. It is shown first how, in late nineteenth-century Netherlands, weight had not yet become a standard of beauty but was rather a bodily curiosity, measured at fairgrounds. The chapter then analyses Dutch newspaper advertisements for slimming remedies to show that, by the 1930s, weight was strongly established as a standard of beauty, scales having ceased to be a fairground attraction. The chapter concludes with an exploration of the consequences of this new standard of beauty, which complicated its character by partially separating it from the visual
    • …
    corecore