85 research outputs found
Hydrogen embrittlement susceptibility of super duplex stainless steels
This thesis describes the metallurgical and environmental factors that influence hydrogen embrittlement of super duplex stainless steels and presents a model to predict the rate at which embrittlement occurs. Super duplex stainless steel has an austenite and ferrite microstructure with an average fraction of each phase of approximately 50%. An investigation was carried out on the metallurgical and environmental factors that influence hydrogen embrittlement of super duplex stainless steels. Tensile specimens of super duplex stainless steel were pre-charged with hydrogen for two weeks in 3.5% NaCl solution at 50Âş C at a range of applied potentials to simulate the conditions that exist when subsea oilfield components are cathodically protected in seawater. The pre-charged specimens were then tested in a slow strain rate tensile test and their susceptibility to hydrogen embrittlement was assessed by the failure time, reduction in cross-sectional area and examination of the fracture surface. The ferrite and austenite in the duplex microstructures were identified by analysing their Cr, Ni, Mo and N contents in an electron microscope, as these elements partition in different concentrations in the two phases. It was shown that hydrogen embrittlement occurred in the ferrite phase, whereas the austenite failed in a ductile manner. An embrittled region existed around the circumference of each fracture surface and the depth of this embrittlement depended on the hydrogen charging time and the potential at which the charging had been carried out. The depth of embrittlement was shown to correlate with the rate of hydrogen diffusion in the alloy, which was measured electrochemically using hydrogen permeation and galvanostatic methods. A two-dimensional diffusion model was used to calculate the hydrogen distribution profiles for each experimental condition and the model could be employed to provide predictions of expected failure times in stressed engineering components.EThOS - Electronic Theses Online ServiceGBUnited Kingdo
Long-term spatiotemporal stability and dynamic changes in the haemoparasite community of spiny mice (Acomys dimidiatus) in four montane wadis in the St. Katherine Protectorate, Sinai, Egypt
Background: Long-term field studies of parasite communities are rare but provide a powerful insight into the ecological processes shaping host-parasite interactions. The aim of our study was to monitor long-term trends in the haemoparasite communities of spiny mice (Acomys dimidiatus) and to identify the principal factors responsible for changes over a 12 year period.
Methods: To this end we sampled four semi-isolated populations of mice (n= 835) in 2000, 2004, 2008 and 2012 in four dry montane valleys (wadis) located in the Sinai Massif, Egypt.
Results: Overall 76.2 % of spiny mice carried at least one of the five haemoparasite genera (Babesia, Bartonella, Haemobartonella, Hepatozoon, Trypanosoma) recorded in the study. Prevalence of haemoparasites varied significantly between the sites with the highest overall prevalence in Wadi Tlah and the lowest in W. El Arbaein, and this changed significantly with time. In the first two surveys there was little change in prevalence, but by 2008, when the first signs of a deepening drought in the region had become apparent, prevalence began to drift downwards, and by 2012 prevalence had fallen to the lowest values recorded from all four sites over the entire 12-year period. The overall mean species richness was 1.2 ± 0.03, which peaked in 2004 and then dropped by more than 50 % by 2012. Species richness was highest among mice from Wadi Tlah and peaked in age class 2 mice (young adults). Site was the most significant factor affecting the prevalence of individual parasite species, with Trypanosoma acomys and Hepatozoon sp. occurring mainly in two wadis (W. Tlah & W. Gharaba). In four of the five genera recorded in the study we observed a significant drop in prevalence or/and abundance since 2004, the exception being Hepatozoon sp.
Conclusions: During the 12-year-long period of study in the Sinai, we observed dynamic changes and possibly even cycles of prevalence and abundance of infections which differed depending on parasite species. Although the exact reasons cannot be identified at this time, we hypothesize that the effects of a 15-year-long scarcity of rainfall in the local environment and a fall in host densities over the period of study may have been responsible for a drop in transmission rates, possibly by a negative impact on vector survival
The Effect of Using Distance Measures in Image Processing Systems
The effect of using distance measure for compare between textural images can be shown by use difference distance measure on deferent textural images ,result show that distance measure effected by more than one factor in addition to kind of image Using distance and correlation measures can be done in order to show the effect of them
Application of pso-ann modelling for predicting the exergetic performance of a building integrated photovoltaic/thermal system
The main objective of this study is to examine the feasibility of hybrid PSO–ANN technique to estimate the exergetic performance of a building integrated photovoltaic/thermal (BIPV/T) system. A performance evaluation criterion (PEC) is defined in this study to assess the overall performance of a BIPV/T system from exergy point of view. Then, the mentioned method is utilized to identify a relationship between the input and output parameters of the BIPV/T system. The parameter PEC was taken as the essential output of the BIPV/T system, while the input parameters were channel length, channel depth, channel width, and air mass flow rate. Prior to PSO, variables of ANN algorithm were optimized. In addition, PSO influential parameters such as swarm size, personal learning coefficient, global learning coefficient, and inertia weight were optimized using a series of trial-and-error process. The predicted results for data sets from ANN and PSO–ANN models were evaluated according to several known statistical indices and novel ranking systems of color intensity rating and total ranking method. The obtained RMSE and R2 in the training (RMSE of 0.010274 and 0.006112, and R2 of 0.9968 and 0.9989, respectively, for the PSO and ANN methods) and testing (RMSE of 0.011146 and 0.005927, and R2 of 0.9967 and 0.9990, respectively, for the PSO and ANN methods) phases. The results revealed that the PSO–ANN network model could slightly accomplish a better performance when it is compared to the conventional ANN
Numerical investigation on the effect of four constant temperature pipes on natural cooling of electronic heat sink by nanofluids: A multifunctional optimization
In the present study, natural-convective heat transfer along with the effects of radiation of aluminum/water nano-fluid between two blades of a heat sink, which is under the impact of a uniform magnetic-field, is studied numerically. The space between two blades of the heat sink is considered as a two-dimensional square enclosure. In the square cavity, there are four pipes with constant temperature Th with a circular cross section. The RSM method is used to optimize the geometric parameters of the pipes. The results show that the heat transfer rate from the pipes and the irreversibility generation augment and the Bejan number reduces by augmenting the Rayleigh number. The heat transfer intensified 7% and 16% by doubling of the aspect ratio of the pipes at the Rayleigh number of 103 and 106, respectively. As the distance between constant-temperature pipes intensified, Nusselt number augments. As the horizontal enclosure rotates 90°, i.e., it becomes a vertical enclosure, the heat transfer decreases by 22% and total irreversibility decreases by 21%. The optimum physical conditions of the pipes are is in the diameter of 0.15 and 0.25 of distance from each other to have maximum heat transfer and the minimum irreversibility generation
- …