2 research outputs found

    Functional Characterization of the N-Acetylmuramyl-l-Alanine Amidase, Ami1, from Mycobacterium abscessus.

    Full text link
    Peptidoglycan (PG) is made of a polymer of disaccharides organized as a three-dimensional mesh-like network connected together by peptidic cross-links. PG is a dynamic structure that is essential for resistance to environmental stressors. Remodeling of PG occurs throughout the bacterial life cycle, particularly during bacterial division and separation into daughter cells. Numerous autolysins with various substrate specificities participate in PG remodeling. Expression of these enzymes must be tightly regulated, as an excess of hydrolytic activity can be detrimental for the bacteria. In non-tuberculous mycobacteria such as Mycobacterium abscessus, the function of PG-modifying enzymes has been poorly investigated. In this study, we characterized the function of the PG amidase, Ami1 from M. abscessus. An ami1 deletion mutant was generated and the phenotypes of the mutant were evaluated with respect to susceptibility to antibiotics and virulence in human macrophages and zebrafish. The capacity of purified Ami1 to hydrolyze muramyl-dipeptide was demonstrated in vitro. In addition, the screening of a 9200 compounds library led to the selection of three compounds inhibiting Ami1 in vitro. We also report the structural characterization of Ami1 which, combined with in silico docking studies, allows us to propose a mode of action for these inhibitors

    Biochemical, structural, and functional studies reveal that MAB_4324c from Mycobacterium abscessus is an active tandem repeat N-acetyltransferase.

    Full text link
    Mycobacterium abscessus is a pathogenic non-tuberculous mycobacterium that possesses an intrinsic drug resistance profile. Several N-acetyltransferases mediate drug resistance and/or participate in M. abscessus virulence. Mining the M. abscessus genome has revealed genes encoding additional N-acetyltransferases whose functions remain uncharacterized, among them MAB_4324c. Here, we showed that the purified MAB_4324c protein is a N-acetyltransferase able to acetylate small polyamine substrates. The crystal structure of MAB_4324c was solved at high resolution in complex with its cofactor, revealing the presence of two GCN5-related N-acetyltransferase domains and a cryptic binding site for NADPH. Genetic studies demonstrate that MAB_4324c is not essential for in vitro growth of M. abscessus; however, overexpression of the protein enhanced the uptake and survival of M. abscessus in THP-1 macrophages
    corecore