30 research outputs found

    Neglected Tropical Diseases of the Middle East and North Africa: Review of Their Prevalence, Distribution, and Opportunities for Control

    Get PDF
    The neglected tropical diseases (NTDs) are highly endemic but patchily distributed among the 20 countries and almost 400 million people of the Middle East and North Africa (MENA) region, and disproportionately affect an estimated 65 million people living on less than US$2 per day. Egypt has the largest number of people living in poverty of any MENA nation, while Yemen has the highest prevalence of people living in poverty. These two nations stand out for having suffered the highest rates of many NTDs, including the soil-transmitted nematode infections, filarial infections, schistosomiasis, fascioliasis, leprosy, and trachoma, although they should be recognized for recent measures aimed at NTD control. Leishmaniasis, especially cutaneous leishmaniasis, is endemic in Syria, Iran, Iraq, Libya, Morocco, and elsewhere in the region. Both zoonotic (Leishmania major) and anthroponotic (Leishmania tropica) forms are endemic in MENA in rural arid regions and urban regions, respectively. Other endemic zoonotic NTDs include cystic echinococcosis, fascioliasis, and brucellosis. Dengue is endemic in Saudi Arabia, where Rift Valley fever and Alkhurma hemorrhagic fever have also emerged. Great strides have been made towards elimination of several endemic NTDs, including lymphatic filariasis in Egypt and Yemen; schistosomiasis in Iran, Morocco, and Oman; and trachoma in Morocco, Algeria, Iran, Libya, Oman, Saudi Arabia, Tunisia, and the United Arab Emirates. A particularly noteworthy achievement is the long battle waged against schistosomiasis in Egypt, where prevalence has been brought down by regular praziquantel treatment. Conflict and human and animal migrations are key social determinants in preventing the control or elimination of NTDs in the MENA, while local political will, strengthened international and intersectoral cooperative efforts for surveillance, mass drug administration, and vaccination are essential for elimination

    Systemic Anticancer Therapy and Thromboembolic Outcomes in Hospitalized Patients With Cancer and COVID-19

    Get PDF
    IMPORTANCE: Systematic data on the association between anticancer therapies and thromboembolic events (TEEs) in patients with COVID-19 are lacking. OBJECTIVE: To assess the association between anticancer therapy exposure within 3 months prior to COVID-19 and TEEs following COVID-19 diagnosis in patients with cancer. DESIGN, SETTING, AND PARTICIPANTS: This registry-based retrospective cohort study included patients who were hospitalized and had active cancer and laboratory-confirmed SARS-CoV-2 infection. Data were accrued from March 2020 to December 2021 and analyzed from December 2021 to October 2022. EXPOSURE: Treatments of interest (TOIs) (endocrine therapy, vascular endothelial growth factor inhibitors/tyrosine kinase inhibitors [VEGFis/TKIs], immunomodulators [IMiDs], immune checkpoint inhibitors [ICIs], chemotherapy) vs reference (no systemic therapy) in 3 months prior to COVID-19. MAIN OUTCOMES AND MEASURES: Main outcomes were (1) venous thromboembolism (VTE) and (2) arterial thromboembolism (ATE). Secondary outcome was severity of COVID-19 (rates of intensive care unit admission, mechanical ventilation, 30-day all-cause mortality following TEEs in TOI vs reference group) at 30-day follow-up. RESULTS: Of 4988 hospitalized patients with cancer (median [IQR] age, 69 [59-78] years; 2608 [52%] male), 1869 had received 1 or more TOIs. Incidence of VTE was higher in all TOI groups: endocrine therapy, 7%; VEGFis/TKIs, 10%; IMiDs, 8%; ICIs, 12%; and chemotherapy, 10%, compared with patients not receiving systemic therapies (6%). In multivariable log-binomial regression analyses, relative risk of VTE (adjusted risk ratio [aRR], 1.33; 95% CI, 1.04-1.69) but not ATE (aRR, 0.81; 95% CI, 0.56-1.16) was significantly higher in those exposed to all TOIs pooled together vs those with no exposure. Among individual drugs, ICIs were significantly associated with VTE (aRR, 1.45; 95% CI, 1.01-2.07). Also noted were significant associations between VTE and active and progressing cancer (aRR, 1.43; 95% CI, 1.01-2.03), history of VTE (aRR, 3.10; 95% CI, 2.38-4.04), and high-risk site of cancer (aRR, 1.42; 95% CI, 1.14-1.75). Black patients had a higher risk of TEEs (aRR, 1.24; 95% CI, 1.03-1.50) than White patients. Patients with TEEs had high intensive care unit admission (46%) and mechanical ventilation (31%) rates. Relative risk of death in patients with TEEs was higher in those exposed to TOIs vs not (aRR, 1.12; 95% CI, 0.91-1.38) and was significantly associated with poor performance status (aRR, 1.77; 95% CI, 1.30-2.40) and active/progressing cancer (aRR, 1.55; 95% CI, 1.13-2.13). CONCLUSIONS AND RELEVANCE: In this cohort study, relative risk of developing VTE was high among patients receiving TOIs and varied by the type of therapy, underlying risk factors, and demographics, such as race and ethnicity. These findings highlight the need for close monitoring and perhaps personalized thromboprophylaxis to prevent morbidity and mortality associated with COVID-19-related thromboembolism in patients with cancer

    Life-Threatening Pneumonitis Related to Docetaxel Chemotherapy

    No full text

    A Pilot Study of an Electronic Exam System at an Australian University

    No full text
    This study sought academic staff and students’ views of electronic exams (e-exams) system and the benefits and challenges of e-exams in general. The respondents provided useful feedback for future adoption of e-exams at an Australian university and elsewhere too. The key findings show that students and academic staff are optimistic about the future adoption of e-exams if the e-exams system is sufficiently improved. They are fully aware of the benefits the technology could offer in supporting learning and education in general and see e-exams as an innovation for learning and teaching in higher education
    corecore