6 research outputs found

    Multi-element lenslet array for efficient solar collection at extreme angles of incidence

    Get PDF
    Photovoltaics (PV) are a versatile and compact route to harness solar power. One critical challenge with current PV is preserving the optimal panel orientation angle with respect to the sun for efficient energy conversion. We experimentally demonstrate a bespoke multi-element lenslet array that allows for an increased power collection over a wide field of view by increasing the effective optical interaction length by up to 13 times specifically at large angles of incidence. This design can potentially be retrofitted onto already deployed amorphous silicon solar panels to yield an increased daily power generation by a factor of 1.36 for solar equivalent illumination. We 3D printed an optical proof of concept multi-element lenslet array to confirm an increase in power density for optical rays incident between 40 and 80 degrees. Our design indicates a novel optical approach that could potentially enable increased efficient solar collection in extreme operating conditions such as on the body of planes or the side of buildings

    A space division multiplexed free-space-optical communication system that can auto-locate and fully self align with a remote transceiver

    Get PDF
    Free-Space Optical (FSO) systems offer the ability to distribute high speed digital links into remote and rural communities where terrain, installation cost or infrastructure security pose critical hurdles to deployment. A challenge in any point-to-point FSO system is initiating and maintaining optical alignment from the sender to the receiver. In this paper we propose and demonstrate a low-complexity self-aligning FSO prototype that can completely self-align with no requirement for initial manual positioning and could therefore form the opto-mechanical basis for a mesh network of optical transceivers. The prototype utilises off-the-shelf consumer electrical components and a bespoke alignment algorithm. We demonstrate an eight fibre spatially multiplexed link with a loss of 15 dB over 210 m

    Multi-layer light trapping structures for enhanced solar collection

    Get PDF
    Light trapping is a commonly used technique for enhancing the efficiency of solar collection in many photovoltaic (PV) devices. In this paper, we present the design of multi-layer light trapping structures that can potentially be retrofitted, or directly integrated, onto crystalline or amorphous silicon solar panels for enhanced optical collection at normal and extreme angle of incidence. This approach can improve the daily optical collection performance of solar panel with and without internally integrated light trapping structure by up to 7.18% and 159.93%, respectively. These improvements predict an enhancement beyond many research level and commercially deployed light trapping technologies. We further enhance this performance by combining our multi-layer optics with high refractive index materials to achieve a daily optical collection of up to 32.20% beyond leading light trapping structures. Our additive light trapping designs could enable the upgradeability of older PV technologies and can be tailored to optimally operate at unique angular ranges for building exteriors or over a wide range of incidence angle for applications such as unmanned aerial vehicles

    Large volume nanoscale 3D printing: Nano-3DP

    No full text
    3D printers suffer from the inverse relationship between throughput and minimum feature size; with smaller features inducing a cubic increase in print time. Here we introduce Nano-3DP, a hybrid process that combines digital light projection 3D printing with nanoscale-relief patterning. The tool enables large volume (cm3) prints with nanoscale details at a truly rapid rate (~120 mm/hour). 40 nm features, half the size of the finest printed details to date, are produced across a scalable print volume. We address the intrinsic issues of throughput and pixel induced surface inhomogeneity. To demonstrate the unique potential realized by this printing method across different areas of science optical lenses, injection molding tools and bio-implants originally acquired by x-ray CT are produced with functional nanoscale surface details. Notably, in vitro bone cell analysis delivered a profound 4.5-fold increase in osteogenesis purely through the inclusion of nanoscale features on the printed surfaces
    corecore