22 research outputs found

    Alleviation of banded leaf and sheath blight disease incidence in maize by bacterial volatile organic compounds and molecular docking of targeted inhibitors in Rhizoctonia solani

    Get PDF
    Rhizoctonia solani (RS) is a pathogenic fungus that affects maize (Zea mays L.) plants and causes banded leaf and sheath blight (BLSB) with severe consequences leading to significant economic losses. Contrarily, rhizobacteria produce numerous volatile organic compounds (VOCs) that help in devising the environment-friendly mechanism for promoting plant growth and stress alleviation without having physical contact with plants. In the present study, 15 rhizobacterial strains were tested for their antagonism against RS. The antagonistic potential of VOCs of the tested plant growth-promoting rhizobacteria (PGPR) strains ranged from 50% to 80% as compared to the control (without PGPR). Among these 15 strains, the maximum (80%) antagonistic activity was exhibited by Pseudomonas pseudoalcaligenes SRM-16. Thus, the potential of VOCs produced by P. pseudoalcaligenes SRM-16 to alleviate the BLSB disease in maize was evaluated. A pot experiment was conducted under greenhouse conditions to observe the effect of VOCs on disease resistance of BLSB-infected seedlings. Overall, maize seedlings exposed to VOCs showed a significant increase in disease resistance as indicated by a reduced disease score than that of unexposed infected plants. The VOCs-exposed maize exhibited lower (11.6%) disease incidence compared to the non-inoculated maize (14.1%). Moreover, plants exposed to VOCs displayed visible improvements in biomass, photosynthetic pigments, osmoregulation, and plant antioxidant and defense enzyme activities compared to the healthy but unexposed seedlings. Simultaneous application of RS and VOCs enhanced superoxide dismutase (SOD), peroxidase (POD), catalase (CAT), phenylalanine ammonia lyase (PAL), ascorbate peroxidase (APX), and polyphenol oxidase (PPO) activities by 96.7%, 266.6%, 313.7%, 246.6%, 307%, and 149.7%, respectively, in the roots and by 81.6%, 246.4%, 269.5%, 269.6%, 329%, and 137.6%, respectively, in the shoots, relative to those of the control plants. The binding affinity of the VOCs (2-pentylfuran, 2,3-butanediol, and dimethyl disulfide) with CRZ1 and S9 protein receptors of RS was assessed by deploying in silico methods. Overall, 2-pentylfuran exhibited a binding affinity with both the selected receptors of RS, while 2,3-butanediol and dimethyl disulfide were able to bind S9 protein only. Hence, it can be deduced that S9 protein receptors are more likely the target RS receptors of bacterial VOCs to inhibit the proliferation of RS

    Wheat in the Era of Genomics and Transgenics

    Get PDF
    Wheat, as one of the most important cereal crops in the world and second major caloric source in the world after rice, is the major staple food in South Asia and many other countries of the world. Prior to onset of “Green Revolution,” South Asian countries were facing the threat of severe famine. Green Revolution wheat genotypes brought out these countries from the crisis they were facing and has helped them to sustain their productions for more than half a century. With the emergence of molecular biology and biotechnology, another window of opportunity is opened to sustain wheat yields by using modern techniques of genes identification and utilization. Through this chapter, we have tried to gather information that was generated for wheat improvement in last 3 decades. These afforest included the development of molecular markers, mapping of genes, sequencing of markers genes, and their utilization through marker-assisted selection. The other part recorded various efforts to genetically transform wheat for traits improvements and/or to study their molecular control

    Physio-anatomical modifications and elemental allocation pattern in Acanthus ilicifolius L. subjected to zinc stress.

    No full text
    Physio-anatomical modifications and elemental distribution pattern in Acanthus ilicifolius subjected to Zn stress were analysed in this study. Survival of A. ilicifolius plants under a high concentration of ZnSO4 was compensated by the reduction in the photosynthetic efficacy. Micro and macro-elemental distribution pattern in the root tissues was significantly influenced by heavy metal exposure. Tolerance towards the excess toxic metal ions in the tissue of A. ilicifolius was aided by the modified anatomical features. Moreover, the increased deposition of Zn around the central vasculature of the root confirms the complexation of Zn2+ in the xylem vessels. Metal induced molecular level changes of root and leaf samples indicate the presence of OH, NH2, and CH3 deformation as well as C-O-H and C-O-C stretch. A prominent band corresponding to CH3 deformation, pointing hemicellulose fortification, occurs in the cell walls of the xylem, aiding in Zn localization. The phytostabilisation potential of A. ilicifolius is dependent on the coordinated responses which endow with phenotypic plasticity necessary to cope with Zn toxicity

    The Effect of LED Light Spectra on the Growth, Yield and Nutritional Value of Red and Green Lettuce (Lactuca sativa)

    No full text
    Controlled Environment Agriculture (CEA) is a method of increasing crop productivity per unit area of cultivated land by extending crop production into the vertical dimension and enabling year-round production. Light emitting diodes (LED) are frequently used as the source of light energy in CEA systems and light is commonly the limiting factor for production under CEA conditions. In the current study, the impact of different spectra was compared with the use of white LED light. The various spectra were white; white supplemented with ultraviolet b for a week before harvest; three combinations of red/blue lights (red 660 nm with blue 450 nm at 1:1 ratio; red 660 nm with blue 435 nm 1:1 ratio; red 660 nm with blue at mix of 450 nm and 435 nm 1:1 ratio); and red/blue supplemented with green and far red (B/R/G/FR, ratio: 1:1:0.07:0.64). The growth, yield, physiological and chemical profiles of two varieties of lettuce, Carmoli (red) and Locarno (green), responded differently to the various light treatments. However, white (control) appeared to perform the best overall. The B/R/G/FR promoted the growth and yield parameters in both varieties of lettuce but also increased the level of stem elongation (bolting), which impacted the quality of grown plants. There was no clear relationship between the various physiological parameters measured and final marketable yield in either variety. Various chemical traits, including vitamin C content, total phenol content, soluble sugar and total soluble solid contents responded differently to the light treatments, where each targeted chemical was promoted by a specific light spectrum. This highlights the importance of designing the light spectra in accordance with the intended outcomes. The current study has value in the field of commercial vertical farming of lettuce under CEA conditions

    Selective Removal of Hexavalent Chromium from Wastewater by Rice Husk: Kinetic, Isotherm and Spectroscopic Investigation

    No full text
    Chromium (Cr) in water bodies is considered as a major environmental issue around the world. In the present study, aqueous Cr(VI) adsorption onto rice husk was studied as a function of various environmental parameters. Equilibrium time was achieved in 2 h and maximum Cr(VI) adsorption was 78.6% at pH 5.2 and 120 mg L−1 initial Cr(VI) concentration. In isotherm experiments, the maximum sorption was observed as 379.63 mg g−1. Among four isotherm models, Dubinin–Radushkevich and Langmuir models showed the best fitting to the adsorption data, suggesting physical and monolayer adsorption to be the dominant mechanism. The kinetic modeling showed that a pseudo-second order model was suitable to describe kinetic equilibrium data, suggesting a fast adsorption rate of Cr(VI). The results of FTIR spectroscopy indicated that mainly –OH and C–H contributed to Cr(VI) adsorption onto rice husk. This paper provided evidence that rice husk could be a cost-effective, environment-friendly and efficient adsorptive material for Cr(VI) removal from wastewater due to its high adsorption capacity

    Evaluating the Effects of Biochar with Farmyard Manure under Optimal Mineral Fertilizing on Tomato Growth, Soil Organic C and Biochemical Quality in a Low Fertility Soil

    No full text
    Biochar amendments are widely recognized to improve crop productivity and soil biogeochemical quality, however, their effects on vegetable crops are less studied. This pot study investigated the effects of cotton stick, corncob and rice straw biochars alone and with farmyard manure (FYM) on tomato growth, soil physico–chemical and biological characteristics, soil organic carbon (SOC) content and amount of soil nutrients under recommended mineral fertilizer conditions in a nutrient-depleted alkaline soil. Biochars were applied at 0, 1.5 and 3% (w/w, basis) rates and FYM was added at 0 and 30 t ha−1 rates. Biochars were developed at 450 °C pyrolysis temperature and varied in total organic C, nitrogen (N), phosphorus (P) and potassium (K) contents. The results showed that biochars, their amounts and FYM significantly improved tomato growth which varied strongly among the biochar types, amounts and FYM. With FYM, the addition of 3% corncob biochar resulted in the highest total chlorophyll contents (9.55 ug g−1), shoot (76.1 cm) and root lengths (44.7 cm), and biomass production. Biochars with and without FYM significantly increased soil pH, electrical conductivity (EC) and cation exchange capacity (CEC). The soil basal respiration increased with biochar for all biochars but not consistently after FYM addition. The water-extractable organic C (WEOC) and soil organic C (SOC) contents increased significantly with biochar amount and FYM, with the highest SOC found in the soil that received 3% corncob biochar with FYM. Microbial biomass C (MBC), N (MBN) and P (MBP) were the highest in corncob biochar treated soils followed by cotton stick and rice straw biochars. The addition of 3% biochars along with FYM also showed significant positive effects on soil mineral N, P and K contents. The addition of 3% corncob biochar with and without FYM always resulted in higher soil N, P and K contents at the 3% rate. The results further revealed that the positive effects of biochars on above-ground plant responses were primarily due to the improvements in below-ground soil properties, nutrients’ availability and SOC; however, these effects varied strongly between biochar types. Our study concludes that various biochars can enhance tomato production, soil biochemical quality and SOC in nutrient poor soil under greenhouse conditions. However, we emphasize that these findings need further investigations using long-term studies before adopting biochar for sustainable vegetable production systems

    Selective Removal of Hexavalent Chromium from Wastewater by Rice Husk: Kinetic, Isotherm and Spectroscopic Investigation

    No full text
    Chromium (Cr) in water bodies is considered as a major environmental issue around the world. In the present study, aqueous Cr(VI) adsorption onto rice husk was studied as a function of various environmental parameters. Equilibrium time was achieved in 2 h and maximum Cr(VI) adsorption was 78.6% at pH 5.2 and 120 mg L−1 initial Cr(VI) concentration. In isotherm experiments, the maximum sorption was observed as 379.63 mg g−1. Among four isotherm models, Dubinin–Radushkevich and Langmuir models showed the best fitting to the adsorption data, suggesting physical and monolayer adsorption to be the dominant mechanism. The kinetic modeling showed that a pseudo-second order model was suitable to describe kinetic equilibrium data, suggesting a fast adsorption rate of Cr(VI). The results of FTIR spectroscopy indicated that mainly –OH and C–H contributed to Cr(VI) adsorption onto rice husk. This paper provided evidence that rice husk could be a cost-effective, environment-friendly and efficient adsorptive material for Cr(VI) removal from wastewater due to its high adsorption capacity

    Glycinebetaine-Induced Alteration in Gaseous Exchange Capacity and Osmoprotective Phenomena in Safflower (Carthamus tinctorius L.) under Water Deficit Conditions

    No full text
    Several inorganic and organic compounds including glycine betaine (GB) are presently being used as an exogenous application to enhance tolerance in plants to different environmental stresses. The current study assessed to what extent exogenously applied GB could improve the gaseous exchange capacity and primary and secondary metabolites in two accessions (16178 and 16180) of safflower (Carthamus tinctorius L.) plants under drought stress. Three-week-old plants of both safflower accessions were subjected to well-watered (control) or water-deficit conditions (60% field capacity (FC)). Three levels of GB (control, 50 mM and 100 mM) were sprayed to the foliage of the control and stressed plants after one month of drought application. After two weeks of foliar application of GB, gas exchange characteristics and other biochemical parameters were determined. The results showed that water deficiency markedly suppressed plant biomass, chlorophyll contents, photosynthesis rate (A), water use efficiency (A/E), stomatal conductance (gs) and relative water contents (RWC) of both accessions of safflower, while it enhanced the levels of osmolytes (GB and proline), hydrogen peroxide (H2O2) and total phenolics. Foliar application of GB was effective in enhancing the plant biomass, chlorophyll contents, gs, sub-stomatal CO2 concentration (Ci), Ci/Ca ratio, osmolytes, H2O2, ascorbic acid (AsA), total phenolics and RWC in safflower plants under water shortage. Thus, exogenous application of GB could be used as an effective strategy to improve plant growth, photosynthetic attributes and secondary metabolites in safflower plants under water deficit conditions

    Deciphering Reserve Mobilization, Antioxidant Potential, and Expression Analysis of Starch Synthesis in Sorghum Seedlings under Salt Stress

    No full text
    Salt stress is one of the major constraints affecting plant growth and agricultural productivity worldwide. Sorghum is a valuable food source and a potential model for studying and better understanding the salt stress mechanics in the cereals and obtaining a more comprehensive knowledge of their cellular responses. Herein, we examined the effects of salinity on reserve mobilization, antioxidant potential, and expression analysis of starch synthesis genes. Our findings show that germination percentage is adversely affected by all salinity levels, more remarkably at 120 mM (36% reduction) and 140 mM NaCl (46% reduction) than in the control. Lipid peroxidation increased in salt-susceptible genotypes (PC-5: 2.88 and CSV 44F: 2.93 nmloe/g.FW), but not in tolerant genotypes. SSG 59-3 increased activities of α-amylase, and protease enzymes corroborated decreased starch and protein content, respectively. SSG 59-3 alleviated adverse effects of salinity by suppressing oxidative stress (H2O2) and stimulating enzymatic and non-enzymatic antioxidant activities (SOD, APX, CAT, POD, GR, and GPX), as well as protecting cell membrane integrity (MDA, electrolyte leakage). A significant increase (p ≀ 0.05) was also observed in SSG 59-3 with proline, ascorbic acid, and total carbohydrates. Among inorganic cations and anions, Na+, Cl−, and SO42− increased, whereas K+, Mg2+, and Ca2+ decreased significantly. SSG 59-3 had a less pronounced effect of excess Na+ ions on the gene expression of starch synthesis. Salinity also influenced Na+ ion efflux and maintained a lower cytosolic Na+/K+ ratio via concomitant upregulation of SbNHX-1 and SbVPPase-I ion transporter genes. Thus, we have highlighted that salinity physiologically and biochemically affect sorghum seedling growth. Based on these findings, we highlighted that SSG 59-3 performed better by retaining higher plant water status, antioxidant potential, and upregulation of ion transporter genes and starch synthesis, thereby alleviating stress, which may be augmented as genetic resources to establish sorghum cultivars with improved quality in saline soils

    Seed Treatment with α-Tocopherol Regulates Growth and Key Physio-Biochemical Attributes in Carrot (Daucus carota L.) Plants under Water Limited Regimes

    No full text
    The influence of seed priming with varying levels (50 and 100 mg L−1) of alpha-tocopherol (Toc) was investigated in carrot plants under water-deficit conditions. For this purpose, two cultivars of carrot, DC4 and DC90, were selected and subjected to well-watered (100% field capacity (FC)) and water-deficit stress (50% FC). After 21 days of water-deficit conditions, a significant suppression was observed in shoot and root fresh and dry weights, their lengths, chlorophyll a, b and total contents, and total soluble proteins (TSP). However, an up-regulatory effect of water stress was observed on the concentrations of glycinebetaine (GB), hydrogen peroxide (H2O2), malondialdehyde (MDA), ascorbic acid (AsA), total phenolics as well as the activities of catalase (CAT) and peroxidase (POD) enzymes. Exogenous application of alpha-tocopherol was effective in reducing the accumulation of H2O2 and MDA contents and improving all growth attributes, contents of chlorophyll, proline, GB, AsA, total phenolics, TSP, and the activities of CAT and POD enzymes. Of both carrot cultivars, cv. DC4 had better performance in terms of growth attributes, whereas the response of the two cultivars was similar in all other attributes varying water regimes. Overall, it is suggested that seed priming with 100 mg L−1 Toc was effective in improving plant growth attributes, osmoprotectants and the oxidative defense system of carrot plants under water-deficit conditions
    corecore