7 research outputs found

    Enhancement flame flashback resistance against CIVB and BLF in swirl burners

    Get PDF
    Swirl combustors have proven as effective flame stabilisers over a wide range of operation conditions thanks to the formation of well-known swirl coherent structures. However, employment of swirl combustors to work on lean premixed combustion modes while introducing alternative fuels such as high hydrogen blends result in many combustion instabilities. Under these conditions, flame flashback has been considered as one of the major instability problems that have the potential of causing considerable damages of the combustion systems hardware in addition to the significant increase in pollutant levels. Combustion Induced Vortex Breakdown (CIVB) is considered a very particular mode of flashback mechanism in swirling flows as this type of flashback occurs even when the fresh mixture’s velocity is higher than the flame speed, consequence of the interaction between swirl structures and swirl burner geometries. Improvements of burner geometries and manipulation of swirl flows can produce good resistance against this type of flashback. However, increase flame flashback resistance against CIVB can lead to an increase in the propensity of another flashback mechanism, Boundary Layer Flashback (BLF). Thus this paper presents an experimental and numerical approach that allows the increase in CIVB resistance by using diffusive air injection and simultaneously avoid BLF by changing the wall boundary layer characteristics using microsurface grids as a liner for the nozzle wall. Results show that using those two techniques together has promising potentials regarding wider stable operation for swirl combustors, enabling them to burn a great variety of fuel blends safely

    Salivary levels of inflammatory and anti-inflammatory biomarkers in periodontitis patients with and without acute myocardial infarction: implications for cardiovascular risk assessment.

    Get PDF
    BACKGROUND Periodontitis is initiated by a dysbiotic activity and furthermore leads to a chronic inflammatory response. The presence of pro-inflammatory markers plays an important role in the inflammatory load. Macrophage inflammatory protein-1 alpha (MIP-1α) and C-reactive protein (CRP) are pro- inflammatory biomarkers that quantify clinical and subclinical inflammation in cardiac ischemia in cardiac inflammation and disease. Adiponectin is an anti-inflammatory marker associated with good health. The susceptibility of periodontitis patients to cardiovascular events needs to be evaluated. OBJECTIVE This study aims to assess the levels of biomarkers in periodontitis patients with and without acute myocardial infarction (AMI) compared to controls. MATERIAL AND METHODS Pro-inflammatory and anti-inflammatory analytes were examined by collecting unstimulated saliva from three groups (n = 20/each): healthy individuals, individuals with stage III periodontitis, and post-myocardial infarction patients with stage III periodontitis. The samples were collected within 48 h of AMI. RESULTS Adiponectin levels were significantly lower in patients with periodontitis with and without AMI compared to controls, while CRP and MIP-1α were significantly higher in patients with periodontitis with and without AMI compared to controls. The highest titers for MIP-1α and CRP were detected among patients with periodontitis with and AMI. CONCLUSION Our study provides possible evidence of the association between periodontitis and salivary analytes that occur in tandem with cardiovascular disease. The lower levels of Adiponectin and higher levels of CRP and MIP-1α in patients with periodontitis indicate that this condition is a potential risk factor for cardiovascular disease. The findings emphasize the importance of early detection and intervention for periodontitis patients to prevent cardiovascular events

    Molecular pathogenicity of 1-nonadecene and l-lactic acid, unique metabolites in radicular cysts and periapical granulomas

    Get PDF
    Recently, 1-nonadecene and l-lactic acid were identified as unique metabolites in radicular cysts and periapical granuloma, respectively. However, the biological roles of these metabolites were unknown. Therefore, we aimed to investigate the inflammatory and mesenchymal-epithelial transition (MET) effects of 1-nonadecene, and the inflammatory and collagen precipitation effects of l-lactic acid on both periodontal ligament fibroblasts (PdLFs) and peripheral blood mononuclear cells (PBMCs). PdLFs and PBMCs were treated with 1-nonadecene and l-lactic acid. Cytokines’ expression was measured using quantitative real-time polymerase chain reaction (qRT-PCR). E-cadherin, N-cadherin, and macrophage polarization markers were measured using flow cytometry. The collagen, matrix metalloproteinase (MMP)-1, and released cytokines were measured using collagen assay, western blot, and Luminex assay, respectively. In PdLFs, 1-nonadecene enhances inflammation through the upregulation of some inflammatory cytokines including IL-1β, IL-6, IL-12A, monocyte chemoattractant protein (MCP)-1, and platelet-derived growth factor (PDGF) α. 1-Nonadecene also induced MET through the upregulation of E-cadherin and the downregulation of N-cadherin in PdLFs. 1-Nonadecene polarized macrophages to a pro-inflammatory phenotype and suppressed their cytokines’ release. l-lactic acid exerted a differential impact on the inflammation and proliferation markers. Intriguingly, l-lactic acid induced fibrosis-like effects by enhancing collagen synthesis, while inhibiting MMP-1 release in PdLFs. These results provide a deeper understanding of 1-nonadecene and l-lactic acid’s roles in modulating the microenvironment of the periapical area. Consequently, further clinical investigation can be employed for target therapy

    Salivary levels of inflammatory and anti-inflammatory biomarkers in periodontitis patients with and without acute myocardial infarction: implications for cardiovascular risk assessment

    Get PDF
    BackgroundPeriodontitis is initiated by a dysbiotic activity and furthermore leads to a chronic inflammatory response. The presence of pro-inflammatory markers plays an important role in the inflammatory load. Macrophage inflammatory protein-1 alpha (MIP-1α) and C-reactive protein (CRP) are pro- inflammatory biomarkers that quantify clinical and subclinical inflammation in cardiac ischemia in cardiac inflammation and disease. Adiponectin is an anti-inflammatory marker associated with good health. The susceptibility of periodontitis patients to cardiovascular events needs to be evaluated.ObjectiveThis study aims to assess the levels of biomarkers in periodontitis patients with and without acute myocardial infarction (AMI) compared to controls.Material and methodsPro-inflammatory and anti-inflammatory analytes were examined by collecting unstimulated saliva from three groups (n = 20/each): healthy individuals, individuals with stage III periodontitis, and post-myocardial infarction patients with stage III periodontitis. The samples were collected within 48 h of AMI.ResultsAdiponectin levels were significantly lower in patients with periodontitis with and without AMI compared to controls, while CRP and MIP-1α were significantly higher in patients with periodontitis with and without AMI compared to controls. The highest titers for MIP-1α and CRP were detected among patients with periodontitis with and AMI.ConclusionOur study provides possible evidence of the association between periodontitis and salivary analytes that occur in tandem with cardiovascular disease. The lower levels of Adiponectin and higher levels of CRP and MIP-1α in patients with periodontitis indicate that this condition is a potential risk factor for cardiovascular disease. The findings emphasize the importance of early detection and intervention for periodontitis patients to prevent cardiovascular events

    Enhancement flame flashback resistance against CIVB and BLF in swirl burners

    Get PDF
    Swirl combustors have proven as effective flame stabilisers over a wide range of operation conditions thanks to the formation of well-known swirl coherent structures. However, employment of swirl combustors to work on lean premixed combustion modes while introducing alternative fuels such as high hydrogen blends result in many combustion instabilities. Under these conditions, flame flashback has been considered as one of the major instability problems that have the potential of causing considerable damages of the combustion systems hardware in addition to the significant increase in pollutant levels. Combustion Induced Vortex Breakdown (CIVB) is considered a very particular mode of flashback mechanism in swirling flows as this type of flashback occurs even when the fresh mixture’s velocity is higher than the flame speed, consequence of the interaction between swirl structures and swirl burner geometries. Improvements of burner geometries and manipulation of swirl flows can produce good resistance against this type of flashback. However, increase flame flashback resistance against CIVB can lead to an increase in the propensity of another flashback mechanism, Boundary Layer Flashback (BLF). Thus this paper presents an experimental and numerical approach that allows the increase in CIVB resistance by using diffusive air injection and simultaneously avoid BLF by changing the wall boundary layer characteristics using microsurface grids as a liner for the nozzle wall. Results show that using those two techniques together has promising potentials regarding wider stable operation for swirl combustors, enabling them to burn a great variety of fuel blends safely

    Molecular pathogenicity of 1-nonadecene and l-lactic acid, unique metabolites in radicular cysts and periapical granulomas

    No full text
    Abstract Recently, 1-nonadecene and l-lactic acid were identified as unique metabolites in radicular cysts and periapical granuloma, respectively. However, the biological roles of these metabolites were unknown. Therefore, we aimed to investigate the inflammatory and mesenchymal-epithelial transition (MET) effects of 1-nonadecene, and the inflammatory and collagen precipitation effects of l-lactic acid on both periodontal ligament fibroblasts (PdLFs) and peripheral blood mononuclear cells (PBMCs). PdLFs and PBMCs were treated with 1-nonadecene and l-lactic acid. Cytokines’ expression was measured using quantitative real-time polymerase chain reaction (qRT-PCR). E-cadherin, N-cadherin, and macrophage polarization markers were measured using flow cytometry. The collagen, matrix metalloproteinase (MMP)-1, and released cytokines were measured using collagen assay, western blot, and Luminex assay, respectively. In PdLFs, 1-nonadecene enhances inflammation through the upregulation of some inflammatory cytokines including IL-1β, IL-6, IL-12A, monocyte chemoattractant protein (MCP)-1, and platelet-derived growth factor (PDGF) α. 1-Nonadecene also induced MET through the upregulation of E-cadherin and the downregulation of N-cadherin in PdLFs. 1-Nonadecene polarized macrophages to a pro-inflammatory phenotype and suppressed their cytokines’ release. l-lactic acid exerted a differential impact on the inflammation and proliferation markers. Intriguingly, l-lactic acid induced fibrosis-like effects by enhancing collagen synthesis, while inhibiting MMP-1 release in PdLFs. These results provide a deeper understanding of 1-nonadecene and l-lactic acid’s roles in modulating the microenvironment of the periapical area. Consequently, further clinical investigation can be employed for target therapy
    corecore