9 research outputs found

    Wronskian, Grammian and Pfaffian Solutions to Nonlinear Partial Differential Equations

    Get PDF
    It is significantly important to search for exact soliton solutions to nonlinear partial differential equations (PDEs) of mathematical physics. Transforming nonlinear PDEs into bilinear forms using the Hirota differential operators enables us to apply the Wronskian and Pfaffian techniques to search for exact solutions for a (3+1)-dimensional generalized Kadomtsev-Petviashvili (KP) equation with not only constant coefficients but also variable coefficients under a certain constraint (ut + α 1(t)uxxy + 3α 2(t)uxuy)x +α 3 (t)uty -α 4(t)uzz + α 5(t)(ux + α 3(t)uy) = 0. However, bilinear equations are the nearest neighbors to linear equations, and expected to have some properties similar to those of linear equations. We have explored a key feature of the linear superposition principle, which linear differential equations have, for Hirota bilinear equations, while intending to construct a particular sub-class of N-soliton solutions formed by linear combinations of exponential traveling waves. Applications are given for the (3+1) dimensional KP, Jimbo-Miwa (JM) and BKP equations, thereby presenting their particular N-wave solutions. An opposite question is also raised and discussed about generating Hirota bilinear equations possessing the indicated N-wave solutions, and two illustrative examples are presented. Using the Pfaffianization procedure, we have extended the generalized KP equation to a generalized KP system of nonlinear PDEs. Wronskian-type Pfaffian and Gramm-type Pfaffian solutions of the resulting Pfaffianized system have been presented. Our results and computations basically depend on Pfaffian identities given by Hirota and Ohta. The Pl̈ucker relation and the Jaccobi identity for determinants have also been employed. A (3+1)-dimensional JM equation has been considered as another important example in soliton theory, uyt - uxxxy - 3(uxuy)x + 3uxz = 0. Three kinds of exact soliton solutions have been given: Wronskian, Grammian and Pfaffian solutions. The Pfaffianization procedure has been used to extend this equation as well. Within Wronskian and Pfaffian formulations, soliton solutions and rational solutions are usually expressed as some kind of logarithmic derivatives of Wronskian and Pfaffian type determinants and the determinants involved are made of functions satisfying linear systems of differential equations. This connection between nonlinear problems and linear ones utilizes linear theories in solving soliton equations. B̈acklund transformations are another powerful approach to exact solutions of nonlinear equations. We have computed different classes of solutions for a (3+1)-dimensional generalized KP equation based on a bilinear B̈acklund transformation consisting of six bilinear equations and containing nine free parameters. A variable coefficient Boussinesq (vcB) model in the long gravity water waves is one of the examples that we are investigating, ut + α 1 (t)uxy + α 2(t)(uw)x + α 3(t)vx = 0; vt + β1(t)(wvx + 2vuy + uvy) + β2(t)(uxwy - (uy)2) + β3(t)vxy + β4(t)uxyy = 0, where wx = uy. Double Wronskian type solutions have been constructed for this (2+1)-dimensional vcB model

    Applications of the g-Drazin Inverse to the Heat Equation and a Delay Differential Equation

    No full text
    We consider applications of the g-Drazin inverse to some classes of abstract Cauchy problems, namely, the heat equation with operator coefficient and delay differential equations in Banach space

    Bright, Dark, and Rogue Wave Soliton Solutions of the Quadratic Nonlinear Klein–Gordon Equation

    No full text
    This article reflects on the Klein–Gordon model, which frequently arises in the fields of solid-state physics and quantum field theories. We analytically delve into solitons and composite rogue-type wave propagation solutions of the model via the generalized Kudryashov and the extended Sinh Gordon expansion approaches. We obtain a class of analytically exact solutions in the forms of exponential and hyperbolic functions involving some arbitrary parameters with the help of Maple, which included comparing symmetric and non-symmetric solutions with other methods. After analyzing the dynamical behaviors, we caught distinct conditions on the accessible parameters of the solutions for the model. By applying conditions to the existing parameters, we obtained various types of rogue waves, bright and dark bells, combing bright–dark, combined dark–bright bells, kink and anti-kink solitons, and multi-soliton solutions. The nature of the solitons is geometrically explained for particular choices of the arbitrary parameters. It is indicated that the nonlinear rogue-type wave packets are restricted in two dimensions that characterized the rogue-type wave envelopes

    Bright, Dark, and Rogue Wave Soliton Solutions of the Quadratic Nonlinear Klein–Gordon Equation

    No full text
    This article reflects on the Klein–Gordon model, which frequently arises in the fields of solid-state physics and quantum field theories. We analytically delve into solitons and composite rogue-type wave propagation solutions of the model via the generalized Kudryashov and the extended Sinh Gordon expansion approaches. We obtain a class of analytically exact solutions in the forms of exponential and hyperbolic functions involving some arbitrary parameters with the help of Maple, which included comparing symmetric and non-symmetric solutions with other methods. After analyzing the dynamical behaviors, we caught distinct conditions on the accessible parameters of the solutions for the model. By applying conditions to the existing parameters, we obtained various types of rogue waves, bright and dark bells, combing bright–dark, combined dark–bright bells, kink and anti-kink solitons, and multi-soliton solutions. The nature of the solitons is geometrically explained for particular choices of the arbitrary parameters. It is indicated that the nonlinear rogue-type wave packets are restricted in two dimensions that characterized the rogue-type wave envelopes

    Novel Precise Solitary Wave Solutions of Two Time Fractional Nonlinear Evolution Models via the MSE Scheme

    No full text
    We construct soliton solutions of the complex time fractional Schrodinger model (tFSM), as well as the space–time fractional differential model (stFDM), leading wave spread through electrical transmission lines model (ETLM) in low pass with the help of modified simple equation scheme. The approach provides us with generalized rational exponential function solutions with some free parameters. A few well-known solitary wave resolutions are derived, starting from the generalized rational solutions selecting specific values of the free constants. The precise solutions acquired via the technique signify that the scheme is comparatively easier to execute and attractive in view of the results. No auxiliary equation is needed to solve any nonlinear fractional models by the scheme. Additionally, we observed that the numerical results are very encouraging for researchers conducting further research on stFDMs in mathematics and physics

    Optical solitons to the fractional order nonlinear complex model for wave packet envelope

    No full text
    This research deals with the fractional order nonlinear complex model, which is a general form of nonlinear Schrodinger equation. This model demonstrates boson gas among 2 as well as 3 body collisions, nuclear hydro-dynamics allied with Skyrme energies, in addition the optical rhythm propagations within dielectric non-Kerr media. To analyze and generate complex dynamics, optical soliton solutions of the model are derived through improved generalized Riccati equation mapping scheme. As a result, bright, dark and combo bright-dark optical wave envelopes and oscillating pulse bright optical solitons are obtained. The effects of fractionality and parameters are also illustrated with few numerical graphics of the achieved results. The achieved optical (bright and dark) solitons solutions can be used in signal transmission through optical fiber communications system
    corecore