13 research outputs found

    TOSNet : a topic-based optimal subnetwork identification in academic networks

    Get PDF
    Subnetwork identification plays a significant role in analyzing, managing, and comprehending the structure and functions in big networks. Numerous approaches have been proposed to solve the problem of subnetwork identification as well as community detection. Most of the methods focus on detecting communities by considering node attributes, edge information, or both. This study focuses on discovering subnetworks containing researchers with similar or related areas of interest or research topics. A topic- aware subnetwork identification is essential to discover potential researchers on particular research topics and provide qualitywork. Thus, we propose a topic-based optimal subnetwork identification approach (TOSNet). Based on some fundamental characteristics, this paper addresses the following problems: 1)How to discover topic-based subnetworks with a vigorous collaboration intensity? 2) How to rank the discovered subnetworks and single out one optimal subnetwork? We evaluate the performance of the proposed method against baseline methods by adopting the modularity measure, assess the accuracy based on the size of the identified subnetworks, and check the scalability for different sizes of benchmark networks. The experimental findings indicate that our approach shows excellent performance in identifying contextual subnetworks that maintain intensive collaboration amongst researchers for a particular research topic. © 2020 Institute of Electrical and Electronics Engineers Inc.. All rights reserved

    Multimodal educational data fusion for students' mental health detection

    Get PDF
    Mental health issues can lead to serious consequences like depression, self-mutilation, and worse, especially for university students who are not physically and mentally mature. Not all students with poor mental health are aware of their situation and actively seek help. Proactive detection of mental problems is a critical step in addressing this issue. However, accurate detections are hard to achieve due to the inherent complexity and heterogeneity of unstructured multi-modal data generated by campus life. Against this background, we propose a detection framework for detecting students' mental health, named CASTLE (educational data fusion for mental health detection). Three parts are involved in this framework. First, we utilize representation learning to fuse data on social life, academic performance, and physical appearance. An algorithm, named MOON (multi-view social network embedding), is proposed to represent students' social life in a comprehensive way by fusing students' heterogeneous social relations effectively. Second, a synthetic minority oversampling technique algorithm (SMOTE) is applied to the label imbalance issue. Finally, a DNN (deep neural network) model is utilized for the final detection. The extensive results demonstrate the promising performance of the proposed methods in comparison to an extensive range of state-of-the-art baselines. © 2013 IEEE

    Emergency warning messages dissemination in vehicular social networks: A trust based scheme

    Get PDF
    To ensure users' safety on the road, a plethora of dissemination schemes for Emergency Warning Messages (EWMs) have been proposed in vehicular networks. However, the issue of false alarms triggered by malicious users still poses serious challenges, such as disruption of vehicular traffic especially on highways leading to precarious effects. This paper proposes a novel Trust based Dissemination Scheme (TDS) for EWMs in Vehicular Social Networks (VSNs) to solve the aforementioned issue. To ensure the authenticity of EWMs, we exploit the user-post credibility network for identifying true and false alarms. Moreover, we develop a reputation mechanism by calculating a trust-score for each node based on its social-utility, behavior, and contribution in the network. We utilize the hybrid architecture of VSNs by employing social-groups based dissemination in Vehicle-to-Infrastructure (V2I) mode, whereas nodes' friendship-network in Vehicle-to-Vehicle (V2V) mode. We analyze the proposed scheme for accuracy by extensive simulations under varying malicious nodes ratio in the network. Furthermore, we compare the efficiency of TDS with state-of-the-art dissemination schemes in VSNs for delivery ratio, transmission delay, number of transmissions, and hop-count. The experimental results validate the significant efficacy of TDS in accuracy and aforementioned network parameters. © 2019 Elsevier Inc

    Early-stage reciprocity in sustainable scientific collaboration

    Get PDF
    Scientific collaboration is of significant importance in tackling grand challenges and breeding innovations. Despite the increasing interest in investigating and promoting scientific collaborations, we know little about the collaboration sustainability as well as mechanisms behind it. In this paper, we set out to study the relationships between early-stage reciprocity and collaboration sustainability. By proposing and defining h-index reciprocity, we give a comprehensive statistical analysis on how reciprocity influences scientific collaboration sustainability, and find that scholars are not altruism and the key to sustainable collaboration is fairness. The unfair h-index reciprocity has an obvious negative impact on collaboration sustainability. The bigger the reciprocity difference, the less sustainable in collaboration. This work facilitates understanding sustainable collaborations and thus will benefit both individual scholar in optimizing collaboration strategies and the whole academic society in improving teamwork efficiency. © 2020 Elsevier Ltd.The authors extend their appreciation to the International Scientific Partnership Program ISPP at King Saud University for funding this research work through ISPP-78. This work is partially supported by China Postdoctoral Science Foundation ( 2019M651115 )

    leveraging artificial intelligence to improve voice disorder identification through the use of a reliable mobile app

    Get PDF
    The evolution of the Internet of Things, cloud computing and wireless communication has contributed to an advance in the interconnectivity, efficiency and data accessibility in smart cities, improving environmental sustainability, quality of life and well-being, knowledge and intellectual capital. In this scenario, the satisfaction of security and privacy requirements to preserve data integrity, confidentiality and authentication is of fundamental importance. In particular, this is essential in the healthcare sector, where health-related data are considered sensitive information able to reveal confidential details about the subject. In this regard, to limit the possibility of security attacks or privacy violations, we present a reliable mobile voice disorder detection system capable of distinguishing between healthy and pathological voices by using a machine learning algorithm. This latter is totally embedded in the mobile application, so it is able to classify the voice without the necessity of transmitting user data to or storing user data on any server. A Boosted Trees algorithm was used as the classifier, opportunely trained and validated on a dataset composed of 2003 voices. The most frequently considered acoustic parameters constituted the inputs of the classifier, estimated and analyzed in real time by the mobile application

    Dysphonia Detection Index (DDI): A New Multi-Parametric Marker to Evaluate Voice Quality

    Get PDF
    The rapid diffusion of voice disorders and the lack of appropriate knowledge about the problem have prompted the search for novel and reliable approaches to detect dysphonia, through easy and accessible instruments such as mobile devices. These systems represent, in fact, valid instruments to improve the patient care not only to facilitate the monitoring of symptoms of any diseases but also supporting the correct diagnosis of pathology, such as the dysphonia. In this paper, we propose a new marker, namely the dysphonia detection index, able to support the evaluation of voice disorders, which can be embedded in a mobile health solution. Four acoustic parameters are combined in a single marker to globally evaluate the state of the health of the voice and to assess the presence or not of a voice disorder. A model tree regression algorithm has been applied to define the relationship between these parameters, and the Youden analysis has been used to define the threshold value to distinguish a pathological from a healthy voice. The reliability of the proposed index has been tested in terms of correct classification of accuracy, sensitivity, and specificity. A dataset of 2003 voices has been used to evaluate the performance of our proposed index, composed of samples selected from three different databases: the Massachusetts Eye and Ear Infirmary, the Saarbruecken Voice, and the VOice ICar fEDerico II databases. Our approach achieved the best performances in comparison with other algorithms, and accuracy equals to 82.2%, while sensitivity and specificity are 82% and 82.6%, respectively

    Real-time dissemination of emergency warning messages in 5G enabled selfish vehicular social networks

    No full text
    This paper addresses the issues of selfishness, limited network resources, and their adverse effects on real-time dissemination of Emergency Warning Messages (EWMs) in modern Autonomous Moving Platforms (AMPs) such as Vehicular Social Networks (VSNs). For this purpose, we propose a social intelligence based identification mechanism to differentiate between a selfish and a cooperative node in the network. Therefore, we devise a crowdsensing based mechanism to calculate a tie-strength value based on several social metrics. Moreover, we design a recursive evolutionary algorithm for each node's reputation calculation and update. Given that, then we estimate each node's state-transition probability to select a super-spreader for rapid dissemination. In order to ensure a seamless and reliable dissemination process, we incorporate 5G network structure instead of conventional short range communication which is used in most vehicular networks at present. Finally, we design a real-time dissemination algorithm for EWMs and evaluate its performance in terms of network parameters such as delivery-ratio, delay, hop-count, and message-overhead for varying values of vehicular density, speed, and selfish nodes’ density based on realistic vehicular mobility traces. In addition, we present a comparative analysis of the performance of the proposed scheme with state-of-the-art dissemination schemes in VSNs. © 2020 Elsevier B.V

    Rectangular Cylinder Orientation and Aspect Ratio Impact on the Onset of Vortex Shedding

    No full text
    Rectangular cylinders have the potential to provide valuable insights into the behavior of fluids in a variety of real-world applications. Keeping this in mind, the current study compares the behavior of fluid flow around rectangular cylinders with an aspect ratio (AR) of 1:2 or 2:1 under the effect of the Reynolds number (Re). The incompressible lattice Boltzmann method is used for numerical computations. It is found that the flow characteristics are highly influenced by changes in the aspect ratio compared to the Reynolds number. The flow exhibits three different regimes: Regime I (steady flow), Regime II (initial steady flow that becomes unsteady afterward), and Regime III (completely unsteady flow). In the case of the cylinder with an aspect ratio of 2:1, vortex generation, variation in drag, and the lift coefficient occur much earlier at very low Reynolds numbers compared to the cylinder with an aspect ratio of 1:2. For the cylinder with an aspect ratio of 1:2, the Reynolds number ranges for Regimes I, II, and III are 1 ≤ Re ≤ 120, 121 ≤ Re ≤ 144, and 145 ≤ Re ≤ 200, respectively. For the cylinder with an aspect ratio of 2:1, the Reynolds number ranges for Regimes I, II, and III are 1 ≤ Re ≤ 24, 25 ≤ Re ≤ 39, and 40 ≤ Re ≤ 200, respectively. The cylinder with an aspect ratio of 1:2 is found to have the ability to stabilize the incoming flow due to its extended after-body flatness. Generally, it has been found that a cylinder with an AR of 2:1 is subjected to higher pressures, higher drag forces, higher curvatures of cross-flow rotations, and higher amplitudes of flow-induced drag, as well as higher lift coefficients and lower shedding frequencies, compared to cylinders with an AR of 1:2. In Regime III, elliptic and vertically mounted airfoil-like flow structures are also observed in the wake of the cylinders

    Deep Learning-based Smart IoT Health System for Blindness Detection using Retina Images

    No full text
    Publisher Copyright: CCBY Copyright: Copyright 2021 Elsevier B.V., All rights reserved.Deep Learning-based Smart Healthcare is getting so much attention due to real-time applicability in everyone life's, and It has obtained more attention with the convergence of IoT. Diabetic eye disease is the primary cause of blindness between working aged peoples. The major populated Asian countries such as India and China presently account for millions of people and at the verge of an eruption of diabetic inhabitants. These growing number of diabetic patients posed a major challenge among trained doctors to provide medical screening and diagnosis. Our goal is to leverage the deep learning techniques to automate the detection of blind spot in an eye and identify how severe the stage may be. In this paper, we propose an optimized technique on top of recently released pre-trained EfficientNet models for blindness identification in retinal images along with a comparative analysis among various other neural network models. Our fine-tuned EfficientNet-B5 based model evaluation follows the benchmark dataset of retina images captured using fundus photography during varied imaging stages and outperforms CNN and ResNet50 models.Peer reviewe

    Exploring the Use of Artificial Intelligence Techniques to Detect the Presence of Coronavirus Covid-19 Through Speech and Voice Analysis

    No full text
    The Covid-19 pandemic represents one of the greatest global health emergencies of the last few decades with indelible consequences for all societies throughout the world. The cost in terms of human lives lost is devastating on account of the high contagiousness and mortality rate of the virus. Millions of people have been infected, frequently requiring continuous assistance and monitoring. Smart healthcare technologies and Artificial Intelligence algorithms constitute promising solutions useful not only for the monitoring of patient care but also in order to support the early diagnosis, prevention and evaluation of Covid-19 in a faster and more accurate way. On the other hand, the necessity to realise reliable and precise smart healthcare solutions, able to acquire and process voice signals by means of appropriate Internet of Things devices in real-time, requires the identification of algorithms able to discriminate accurately between pathological and healthy subjects. In this paper, we explore and compare the performance of the main machine learning techniques in terms of their ability to correctly detect Covid-19 disorders through voice analysis. Several studies report, in fact, significant effects of this virus on voice production due to the considerable impairment of the respiratory apparatus. Vocal folds oscillations that are more asynchronous, asymmetrical and restricted are observed during phonation in Covid-19 patients. Voice sounds selected by the Coswara database, an available crowd-sourced database, have been e analysed and processed to evaluate the capacity of the main ML techniques to distinguish between healthy and pathological voices. All the analyses have been evaluated in terms of accuracy, sensitivity, specificity, F1-score and Receiver Operating Characteristic area. These show the reliability of the Support Vector Machine algorithm to detect the Covid-19 infections, achieving an accuracy equal to about 97%
    corecore