92 research outputs found
Time series prediction via aggregation : an oracle bound including numerical cost
We address the problem of forecasting a time series meeting the Causal
Bernoulli Shift model, using a parametric set of predictors. The aggregation
technique provides a predictor with well established and quite satisfying
theoretical properties expressed by an oracle inequality for the prediction
risk. The numerical computation of the aggregated predictor usually relies on a
Markov chain Monte Carlo method whose convergence should be evaluated. In
particular, it is crucial to bound the number of simulations needed to achieve
a numerical precision of the same order as the prediction risk. In this
direction we present a fairly general result which can be seen as an oracle
inequality including the numerical cost of the predictor computation. The
numerical cost appears by letting the oracle inequality depend on the number of
simulations required in the Monte Carlo approximation. Some numerical
experiments are then carried out to support our findings
Periodic hypokalemic paralysis disclosing thyrotoxicosis
BACKGROUND:
Hypokaliemic periodic paralysis is an uncommon complication of hyperthyroidism occurring sporadically almost exclusively in young Asian men. The clinical presentation is the same as in familial hypokaliemic periodic paralysis. Treatment consists of conventional management for thyrotoxicosis.
CASE REPORT:
A Laotian man aged 42 years had suffered episodes of pain and fatigue in the lower limbs lasting 2 to 7 days over the last few months. The patient was hospitalized with severe limb pain. Clinical examination found severe motor deficit involving all four limbs. Laboratory findings induced hypokaliemia (1.8 mmol/l) and hyperthyroidism (free thyroxin 36 pmol/l, TSH < 0.005 mlU/l). Thyroid echography revealed multinodular goitre with two heterogeneous nodules. Strong uptake was seen on the scintigram. The motor deficit regressed within 8 hours and the kaliemia was restored with 1.50 g KCl. The patient was discharged with carbimazole (30 mg/d). Three months later he was euthyroid and symptom free. Total thyroidectomy was performed and L-thyroxin prescribed. The patient remains symptom-free at the last follow-up, 5 months after thyroidectomy.
DISCUSSION:
The pathogenesis of hypokaliemic periodic paralysis involves the ATPase-dependent sodium-potassium pump whose activity is stimulated by thyroid hormones. The reasons for the ethnic and male predominance are poorly elucidated
Characterization of in-depth cavity distribution after thermal annealing of helium-implanted silicon and gallium nitride
Single-crystalline silicon wafers covered with sacrificial oxide layer and epitaxially grown gallium nitride layers were implanted with high-fluence helium ions (2-6 × 1016 cm- 2) at energies of 20-30 keV. Thermal annealings at 650-1000 °C, 1 h were performed on the Si samples and rapid thermal annealings at 600-1000 °C, 120 s under N2 were performed on the GaN samples. The as-implanted samples and the near-surface cavity distributions of the annealed samples were investigated with variable angle spectroscopic ellipsometry. In-depth defect profiles and cavity profiles can be best described with multiple independent effective medium sublayers of varying ratio of single-crystal/void. The number of sublayers was chosen to maximize the fit quality without a high parameter cross-correlation. The dependence of the implantation fluence, oxide layer thickness and annealing temperature on the cavity distribution was separately investigated. The ellipsometric fitted distributions were compared and cross-checked with analyses of transmission electron micrographs where the average surface cavity was determined sublayer by sublayer. The in-depth profiles were also compared with simulations of He and vacancy distributions
Distribution of exogenous 25-hydroxycholesterol in Hep G2 cells between two different pools
AbstractBinding of [26,27-3H]25-hydroxycholesterol (25HC) to human hepatoma Hep G2 cells was saturated within 120 min. Two intracellular pools of 25HC were identified in a pulse-chase experiment: (i) an exchangeable pool which was in dynamic equilibrium with 25HC in the medium (t1/2 of reversible exchange 15 min) and (ii) an unexchangeable pool which remained in cells during incubation in medium containing LPDS. 25HC from the exchangeable pool inhibits cholesterol biosynthesis, decreases the HMG CoA reductase mRNA level and stimulates cholesterol acylation. 25HC from the unexchangeable pool was partially bound to cytosolic proteins and apparently utilized for metabolic transformation. Incubation of Hep G2 cells with [26,27-3H]25HC in the presence of a 30-fold molar excess of 3β-hydroxy-5α-cholest-8(14)-en-15-one was found to cause (i) 2-fold decrease in the binding of [26,27-3H]25HC to cytosolic proteins (sedimentation constant of radioactive complex was 4–5 S) and (ii) the 35% inhibition of 25HC transformation to polar metabolites
Rank-based model selection for multiple ions quantum tomography
The statistical analysis of measurement data has become a key component of
many quantum engineering experiments. As standard full state tomography becomes
unfeasible for large dimensional quantum systems, one needs to exploit prior
information and the "sparsity" properties of the experimental state in order to
reduce the dimensionality of the estimation problem. In this paper we propose
model selection as a general principle for finding the simplest, or most
parsimonious explanation of the data, by fitting different models and choosing
the estimator with the best trade-off between likelihood fit and model
complexity. We apply two well established model selection methods -- the Akaike
information criterion (AIC) and the Bayesian information criterion (BIC) -- to
models consising of states of fixed rank and datasets such as are currently
produced in multiple ions experiments. We test the performance of AIC and BIC
on randomly chosen low rank states of 4 ions, and study the dependence of the
selected rank with the number of measurement repetitions for one ion states. We
then apply the methods to real data from a 4 ions experiment aimed at creating
a Smolin state of rank 4. The two methods indicate that the optimal model for
describing the data lies between ranks 6 and 9, and the Pearson test
is applied to validate this conclusion. Additionally we find that the mean
square error of the maximum likelihood estimator for pure states is close to
that of the optimal over all possible measurements.Comment: 24 pages, 6 figures, 3 table
Lack of Wdr13 Gene in Mice Leads to Enhanced Pancreatic Beta Cell Proliferation, Hyperinsulinemia and Mild Obesity
WD-repeat proteins are very diverse, yet these are structurally related proteins that participate in a wide range of cellular functions. WDR13, a member of this family, is conserved from fishes to humans and localizes into the nucleus. To understand the in vivo function(s) of Wdr13 gene, we have created and characterized a mutant mouse strain lacking this gene. The mutant mice had higher serum insulin levels and increased pancreatic islet mass as a result of enhanced beta cell proliferation. While a known cell cycle inhibitor, p21, was downregulated in the mutant islets, over expression of WDR13 in the pancreatic beta cell line (MIN6) resulted in upregulation of p21, accompanied by retardation of cell proliferation. We suggest that WDR13 is a novel negative regulator of the pancreatic beta cell proliferation. Given the higher insulin levels and better glucose clearance in Wdr13 gene deficient mice, we propose that this protein may be a potential candidate drug target for ameliorating impaired glucose metabolism in diabetes
Metformin Prevents Nigrostriatal Dopamine Degeneration Independent of AMPK Activation in Dopamine Neurons
Metformin is a widely prescribed drug used to treat type-2 diabetes, although recent studies show it has wide ranging effects to treat other diseases. Animal and retrospective human studies indicate that Metformin treatment is neuroprotective in Parkinson’s Disease (PD), although the neuroprotective mechanism is unknown, numerous studies suggest the beneficial effects on glucose homeostasis may be through AMPK activation. In this study we tested whether or not AMPK activation in dopamine neurons was required for the neuroprotective effects of Metformin in PD. We generated transgenic mice in which AMPK activity in dopamine neurons was ablated by removing AMPK beta 1 and beta 2 subunits from dopamine transporter expressing neurons. These AMPK WT and KO mice were then chronically exposed to Metformin in the drinking water then exposed to MPTP, the mouse model of PD. Chronic Metformin treatment significantly attenuated the MPTP-induced loss of Tyrosine Hydroxylase (TH) neuronal number and volume and TH protein concentration in the nigrostriatal pathway. Additionally, Metformin treatment prevented the MPTP-induced elevation of the DOPAC:DA ratio regardless of genotype. Metformin also prevented MPTP induced gliosis in the Substantia Nigra. These neuroprotective actions were independent of genotype and occurred in both AMPK WT and AMPK KO mice. Overall, our studies suggest that Metformin’s neuroprotective effects are not due to AMPK activation in dopaminergic neurons and that more research is required to determine how metformin acts to restrict the development of PD
Neonatal exendin-4 reduces growth, fat deposition and glucose tolerance during treatment in the intrauterine growth-restricted lamb
BACKGROUND IUGR increases the risk of type 2 diabetes mellitus (T2DM) in later life, due to reduced insulin sensitivity and impaired adaptation of insulin secretion. In IUGR rats, development of T2DM can be prevented by neonatal administration of the GLP-1 analogue exendin-4. We therefore investigated effects of neonatal exendin-4 administration on insulin action and β-cell mass and function in the IUGR neonate in the sheep, a species with a more developed pancreas at birth. METHODS Twin IUGR lambs were injected s.c. daily with vehicle (IUGR+Veh, n = 8) or exendin-4 (1 nmol.kg-1, IUGR+Ex-4, n = 8), and singleton control lambs were injected with vehicle (CON, n = 7), from d 1 to 16 of age. Glucose-stimulated insulin secretion and insulin sensitivity were measured in vivo during treatment (d 12–14). Body composition, β-cell mass and in vitro insulin secretion of isolated pancreatic islets were measured at d 16. PRINCIPLE FINDINGS IUGR+Veh did not alter in vivo insulin secretion or insulin sensitivity or β-cell mass, but increased glucose-stimulated insulin secretion in vitro. Exendin-4 treatment of the IUGR lamb impaired glucose tolerance in vivo, reflecting reduced insulin sensitivity, and normalised glucose-stimulated insulin secretion in vitro. Exendin-4 also reduced neonatal growth and visceral fat accumulation in IUGR lambs, known risk factors for later T2DM. CONCLUSIONS Neonatal exendin-4 induces changes in IUGR lambs that might improve later insulin action. Whether these effects of exendin-4 lead to improved insulin action in adult life after IUGR in the sheep, as in the PR rat, requires further investigation.Kathryn L. Gatford, Siti A. Sulaiman, Saidatul N. B. Mohammad, Miles J. De Blasio, M. Lyn Harland, Rebecca A. Simmons, Julie A. Owen
- …