39 research outputs found
Ventricular septal defect in a child with Alport syndrome: a case report
<p>Abstract</p> <p>Background</p> <p>Alport syndrome (AS) is a rare inherited disorder characterized by an inflammation of the kidneys and damage to the glomerular capillaries, ultimately leading to renal failure at an early age. To date, rare reports of cardiac involvement in AS have been described, due in the majority of cases to the higher risk of heart conduction abnormalities in these patients, at times requiring implantation of a transcutaneous pacemaker. An increased risk of hypertension is likewise commonly featured.</p> <p>Case presentation</p> <p>We report the case of a 17-year-old female affected by a very severe early form of AS. A previously unreported association of the syndrome with congenital heart disease (CHD), (in this case membranous ventricular septal defect), is also reported. A possible pathophysiological mechanism underlying the concomitant manifestation of these two disorders is suggested. Complications implicated in surgical treatment of CHD are described. Clinical and therapeutic management of AS with cardiovascular involvement are discussed, and a short literature review performed.</p> <p>Conclusions</p> <p>This first report of a cardiovascular association highlights the possible involvement of collagen mutations in the two pathologies. Even when drug-resistance appears to be responsible for the failure to control secondary hypertension in AS, clonidine may represent a safe, effective option in the normalization of high blood pressure.</p
Women and Alport syndrome
X-linked Alport syndrome (XLAS) is caused by mutations in type IV collagen causing sensorineural hearing loss, eye abnormalities, and progressive kidney dysfunction that results in near universal end-stage renal disease (ESRD) and the need for kidney transplantation in affected males. Until recent decades, the disease burden in heterozygous “carrier” females was largely minimized or ignored. Heterozygous females have widely variable disease outcomes, with some affected females exhibiting normal urinalysis and kidney function, while others develop ESRD and deafness. While the determinants of disease severity in females with XLAS are uncertain, skewing of X-chromosome inactivation has recently been found to play a role. This review will explore the natural history of heterozygous XLAS females, the determinants of disease severity, and the utility of using XLAS females as kidney donors
The role of molecular genetics in diagnosing familial hematuria(s)
Familial microscopic hematuria (MH) of glomerular origin represents a heterogeneous group of monogenic conditions involving several genes, some of which remain unknown. Recent advances have increased our understanding and our ability to use molecular genetics for diagnosing such patients, enabling us to study their clinical characteristics over time. Three collagen IV genes, COL4A3, COL4A4, and COL4A5 explain the autosomal and X-linked forms of Alport syndrome (AS), and a subset of thin basement membrane nephropathy (TBMN). A number of X-linked AS patients follow a milder course reminiscent of that of patients with heterozygous COL4A3/COL4A4 mutations and TBMN, while at the same time a significant subset of patients with TBMN and familial MH progress to chronic kidney disease (CKD) or end-stage kidney disease (ESKD). A mutation in CFHR5, a member of the complement factor H family of genes that regulate complement activation, was recently shown to cause isolated C3 glomerulopathy, presenting with MH in childhood and demonstrating a significant risk for CKD/ESKD after 40 years old. Through these results molecular genetics emerges as a powerful tool for a definite diagnosis when all the above conditions enter the differential diagnosis, while in many at-risk related family members, a molecular diagnosis may obviate the need for another renal biopsy
Effects of mycophenolate mofetil on kidney function and phosphorylation status of renal proteins in Alport COL4A3-deficient mice
Background: We investigated the effects of mycophenolate mofetil (MMF) on kidney function and on protein phosphorylation in a mouse model for the human Alport syndrome. Methods: COL4A3-deficient (COL4A3-/-) mice were randomly allocated to receive a placebo (PLC COL4A3-/-) or MMF treatment (MMF COL4A3-/-). Wild type mice (WT) were used as controls. Changes in serum creatinine, total protein and blood urea nitrogen (BUN), concentrations of mycophenolic acid (MPA) and its glucuronide metabolite (MPAG), serum protein electrophoresis, urine dipstick chemistry and sediment were measured. Changes in the phosphorylation status of renal proteins and histology were analyzed. Results: MMF influenced kidney function and protein phosphorylation. Serum creatinine and BUN were lower in MMF treated compared to PLC treated COL4A3-/-mice. Serum albumin and alpha-1 globulins were significantly decreased while serum creatinine, alpha-2 globulins, urine dipstick protein, leukocyte esterase, hemoglobin and red blood cells were all increased in both COL4A3-/-groups compared to WT. Differential 2DE-gel analysis identified six phosphorylated kidney protein spots that were significantly altered by MMF. Conclusions: These data suggest that the MMF treatment in this murine model moderately improved kidney function and reversed the phosphorylation status of six renal phosphoprotein spots to that seen in WT mice