3 research outputs found

    Enriching Intelligent Textbooks with Interactivity: When Smart Content Allocation Goes Wrong

    Get PDF
    One of the main directions of increasing the educational value of a digital textbook is its enrichment with interactive content. Such content can come from outside the textbooks - from multiple existing repositories of educational resources. However, finding the right place for such external resources is not always a trivial task. There exist multiple sources of potential problems: from mismatching metadata to mutually contradicting prerequisite-outcome structures of underlying resources, from differences in granularity and coverage to ontological conflicts. In this paper, we make an attempt to categorize these problems and give examples from our recent experiment on automated assignment of smart interactive learning content to the chapters of an intelligent textbook in a programming domain

    What's in an Index: Extracting Domain-specific Knowledge Graphs from Textbooks

    No full text
    A typical index at the end of a textbook contains a manually-provided vocabulary of terms related to the content of the textbook. In this paper, we extend our previous work on extraction of knowledge models from digital textbooks. We are taking a more critical look at the content of a textbook index and present a mechanism for classifying index terms according to their domain specificity: a core domain concept, an in-domain concept, a concept from a related domain, and a concept from a foreign domain. We link the extracted models to DBpedia and leverage the aggregated linguistic and structural information from textbooks and DBpedia to construct and prune the domain-specific knowledge graphs. The evaluation experiments demonstrate (1) the ability of the approach to identify (with high accuracy) different levels of domain specificity for automatically extracted concepts, (2) its cross-domain robustness, and (3) the added value of the domain specificity information. These results clearly indicate the improved quality of the refined knowledge graphs and widen their potential applicability

    Delivering clinical trials at home: protocol, design and implementation of a direct-to-family paediatric lupus trial

    No full text
    Introduction Direct-to-family clinical trials efficiently provide data while reducing the participation burden for children and their families. Although these trials can offer significant advantages over traditional clinical trials, the process of designing and implementing direct-to-family studies is poorly defined, especially in children with rheumatic disease. This paper provides lessons learnt from the design and implementation of a self-controlled, direct-to-family pilot trial aimed to evaluate the effects of a medication management device on adherence to hydroxychloroquine in paediatric SLE.Methods Several design features accommodate a direct-to-family approach. Participants meeting eligibility criteria from across the USA were identified a priori through a disease registry, and all outcome data are collected remotely. The primary outcome (medication adherence) is evaluated using electronic medication event-monitoring, plasma drug levels, patient questionnaires and pill counts. Secondary and exploratory endpoints include (1) lupus disease activity measured by a remote SLE Disease Activity Index examination and the Systemic Lupus Activity Questionnaire; and (2) hydroxychloroquine pharmacokinetics and pharmacodynamics. Recruitment of the initial target of 20 participants was achieved within 10 days. Due to initial recruitment success, enrolment was increased to 26 participants. Additional participants who were interested were placed on a waiting list in case of dropouts during the study.Discussion and dissemination Direct-to-family trials offer several advantages but present unique challenges. Lessons learnt from the protocol development, design, and implementation of this trial will inform future direct-to-family trials for children and adults with rheumatic diseases. Additionally, the data collected remotely in this trial will provide critical information regarding the accuracy of teleresearch in lupus, the impact of adherence to hydroxychloroquine on disease activity and a pharmacokinetic analysis to inform paediatric-specific dosing of hydroxychloroquine.Trial registration number ClinicalTrials.gov Registry (NCT04358302)
    corecore