468 research outputs found

    Quantum Turbulent Structure in Light

    Full text link
    The infinite superpositions of random plane waves are known to be threaded with vortex line singularities which form complicated tangles and obey strict topological rules. We observe that within these structures a timelike axis appears to emerge with which we can define vortex velocities in a useful way: with both numerical simulations and optical experiments, we show that the statistics of these velocities match those of turbulent quantum fluids such as superfluid helium and atomic Bose-Einstein condensates. These statistics are shown to be independent of system scale. These results raise deep questions about the general nature of quantum chaos and the role of nonlinearity in the structure of turbulence.Comment: 4 pages, 2 figure

    Computer simulation of syringomyelia in dogs

    Get PDF
    Syringomyelia is a pathological condition in which fluid-filled cavities (syringes) form and expand in the spinal cord. Syringomyelia is often linked with obstruction of the craniocervical junction and a Chiari malformation, which is similar in both humans and animals. Some brachycephalic toy breed dogs such as Cavalier King Charles Spaniels (CKCS) are particularly predisposed. The exact mechanism of the formation of syringomyelia is undetermined and consequently with the lack of clinical explanation, engineers and mathematicians have resorted to computer models to identify possible physical mechanisms that can lead to syringes. We developed a computer model of the spinal cavity of a CKCS suffering from a large syrinx. The model was excited at the cranial end to simulate the movement of the cerebrospinal fluid (CSF) and the spinal cord due to the shift of blood volume in the cranium related to the cardiac cycle. To simulate the normal condition, the movement was prescribed to the CSF. To simulate the pathological condition, the movement of CSF was blocked

    Implementation of the Projector Augmented Wave LDA+U Method: Application to the Electronic Structure of NiO

    Full text link
    The so-called local density approximation plus the multi-orbital mean-field Hubbard model (LDA+U) has been implemented within the all-electron projector augmented-wave method (PAW), and then used to compute the insulating antiferromagnetic ground state of NiO and its optical properties. The electronic and optical properties have been investigated as a function of the Coulomb repulsion parameter U. We find that the value obtained from constrained LDA (U=8 eV) is not the best possible choice, whereas an intermediate value (U=5 eV) reproduces the experimental magnetic moment and optical properties satisfactorily. At intermediate U, the nature of the band gap is a mixture of charge transfer and Mott-Hubbard type, and becomes almost purely of the charge-transfer type at higher values of U. This is due to the enhancement of the oxygen 2p states near the top of the valence states with increasing U value.Comment: 23 pages, 6 figures, submitted to Phys. Rev.

    Property (T) and rigidity for actions on Banach spaces

    Full text link
    We study property (T) and the fixed point property for actions on LpL^p and other Banach spaces. We show that property (T) holds when L2L^2 is replaced by LpL^p (and even a subspace/quotient of LpL^p), and that in fact it is independent of 1p<1\leq p<\infty. We show that the fixed point property for LpL^p follows from property (T) when 1. For simple Lie groups and their lattices, we prove that the fixed point property for LpL^p holds for any 1<p<1< p<\infty if and only if the rank is at least two. Finally, we obtain a superrigidity result for actions of irreducible lattices in products of general groups on superreflexive Banach spaces.Comment: Many minor improvement
    corecore