4 research outputs found
Tracing the dominant sources of sediment flowing towards Lake Victoria using geochemical tracers and a Bayesian mixing model
PurposeLake Victoria has been increasingly silting over the past decades, impacting water quality and loss of biodiversity. Sediment control strategies require information on the relative and absolute contributions of sediment from different sources. However, to date, there is no continuous monitoring of sediment flux or water quality in any of the tributaries, prohibiting an assessment of the scale of the problem. The aim of this study was to trace the dominant sources of riverine sediment using geochemical fingerprinting, thereby generating a knowledge base for improving land management and reducing sediment yields in Simiyu River catchment, one of the main contributing rivers to Lake Victoria.Materials and methodsGeochemical tracer concentrations were analyzed in transported sediment from the main river and two tributaries (riverbed sediments) and from soils in five dominant land use types (agricultural land, bush land, forest land, channel banks, and main river banks). Dominant sources to the Simiyu main river sediment were attributed using the Bayesian MixSIAR model.Results and discussionThe mixing model outputs showed that the Simiyu tributary was the dominant source of sediment to the Simiyu main river with 63.2%, while the Duma tributary accounted for 36.8%. Cultivated land was shown to be the main land use source of riverine sediment, accounting for 80.0% and 86.4% in Simiyu and Duma sub-tributaries, respectively, followed by channel banks with 9.0% in both sub-tributaries. Direct unmixing of the Simiyu main river sediment to the land use sources yielded 64.7% contribution of cultivated land and 26.5% of channel banks.ConclusionThe demonstrated application of sediment source tracing provides an important pathway for quantifying the dominant sources of sediment in the rivers flowing towards Lake Victoria. Eroded soil from agricultural areas is the biggest contributor to transported sediment in the Simiyu River. This information is vital for the design of catchment wide management plans that should focus on reducing soil erosion and sediment delivery from farming areas to the river networks, ultimately supporting both food security and water quality in the Lake Victoria Basin
Rare earth elements and uranium in Minjingu phosphate fertilizer products : plant food for thought
DATA AVAILABILITY :
Data will be made available on request.Minjingu phosphate ore is Tanzania's sole domestic supply of phosphorus (P). The ore contains medium to high concentrations of naturally occurring P2O5 (20â35 %) and relevant concentrations of uranium and rare earth elements (REEs) are also suspected to be present. Currently, neither uranium nor REEs are recovered. They either end up in mine tailings or are spread across agricultural soils with fertilizer products. This work provides a first systematic review of the uranium and REE concentrations that can be expected in the different layers of Minjingu phosphate ore, the way the ore is presently processed, as well as a discussion on alternative processing pathways with uranium/REE recovery. The study analyzed ten distinct Minjingu phosphate ore layers, four mine tailings, and five intermediate and final mineral fertilizer products from the Minjingu mine and processing plant located in northern Tanzania. The results confirm that the uranium concentrations and to a lesser degree, the REE concentrations are indeed elevated if compared to concentrations in other phosphate ores. The study does not identify a significant risk resulting from this. The development of techno-economic solutions for more comprehensive utilization of Minjingu ore is, however, strongly encouraged and suggestions on such processes are provided.The Tanzania Atomic Energy Commission (TAEC), Nelson Mandela African Institution of Science and Technology (NM-AIST), the Austrian Federal Ministry of Education, Science and Research (BMBWF) through Austria's Agency for Education and Internationalization (OeAD) and BMBWF/OeAD support through a Ernst Mach Grant.https://www.sciencedirect.com/journal/resources-conservation-and-recyclinghj2024Chemical EngineeringChemistrySDG-09: Industry, innovation and infrastructur
Assessing the Impacts of Land Use and Climate Changes on River Discharge towards Lake Victoria
The Lake Victoria basinâs expanding population is heavily reliant on rainfall and river flow to meet their water needs, making them extremely vulnerable to changes in climate and land use. To develop adaptation and mitigation strategies to climate changes it is urgently necessary to evaluate the impacts of climate change on the quantity of water in the rivers that drain into Lake Victoria. In this study, the semi-distributed hydrological SWAT model was used to evaluate the impact of current land use and climate changes for the period of 1990â2019 and assess the probable future impacts of climate changes in the near future (2030â2060) on the Simiyu river discharge draining into Lake Victoria, Northern Tanzania. The General Circulation Model under RCPs 4.5, 6.0 and 8.5 predicted an increase in the annual average temperature of 1.4 °C in 2030 to 2 °C in 2060 and an average of 7.8% reduction in rainfall in the catchment. The simulated river discharge from the hydrological model under RCPs 4.5, 6.0 and 8.5 revealed a decreasing trend in annual average discharge by 1.6 m3/s from 5.66 m3/s in 2019 to 4.0 m3/s in 2060. The increase in evapotranspiration caused by the temperature increase is primarily responsible for the decrease in river discharge. The model also forecasts an increase in extreme discharge events, from a range between 32.1 and 232.8 m3/s in 1990â2019 to a range between 10.9 and 451.3 m3/s in the 2030â2060 period. The present combined impacts of climate and land use changes showed higher effects on peak discharge at different return periods (Q5 to Q100) with values of 213.7 m3/s (Q5), 310.2 m3/s (Q25) and 400.4 m3/s (Q100) compared to the contributions of climate-change-only scenario with peak discharges of 212.1 m3/s (Q5), 300.2 m3/s (Q25) and 390.2 m3/s (Q100), and land use change only with peak discharges of 295.5 m3/s (Q5), 207.1 m3/s Q25) and 367.3 m3/s (Q100). However, the contribution ratio of climate change was larger than for land use change. The SWAT model proved to be a useful tool for forecasting river discharge in complex semi-arid catchments draining towards Lake Victoria. These findings highlight the need for catchment-wide water management plans in the Lake Victoria Basin
Rare earth elements and uranium in Minjingu phosphate fertilizer products: Plant food for thought,Resources, Conservation and Recycling
International audienceMinjingu phosphate ore is Tanzania's sole domestic supply of phosphorus (P). The ore contains medium to high concentrations of naturally occurring P2O5 (20â35 %) and relevant concentrations of uranium and rare earth elements (REEs) are also suspected to be present. Currently, neither uranium nor REEs are recovered. They either end up in mine tailings or are spread across agricultural soils with fertilizer products. This work provides a first systematic review of the uranium and REE concentrations that can be expected in the different layers of Minjingu phosphate ore, the way the ore is presently processed, as well as a discussion on alternative processing pathways with uranium/REE recovery. The study analyzed ten distinct Minjingu phosphate ore layers, four mine tailings, and five intermediate and final mineral fertilizer products from the Minjingu mine and processing plant located in northern Tanzania. The results confirm that the uranium concentrations and to a lesser degree, the REE concentrations are indeed elevated if compared to concentrations in other phosphate ores. The study does not identify a significant risk resulting from this. The development of techno-economic solutions for more comprehensive utilization of Minjingu ore is, however, strongly encouraged and suggestions on such processes are provided