6 research outputs found

    Tailoring Dzyaloshinskii-Moriya interaction in a transition metal dichalcogenide by dual-intercalation

    Full text link
    Dzyaloshinskii-Moriya interaction (DMI) is vital to form various chiral spin textures, novel behaviors of magnons and permits their potential applications in energy-efficient spintronic devices. Here, we realize a sizable bulk DMI in a transition metal dichalcogenide (TMD) 2H-TaS2 by intercalating Fe atoms, which form the chiral supercells with broken spatial inversion symmetry and also act as the source of magnetic orderings. Using a newly developed protonic gate technology, gate-controlled protons intercalation could further change the carrier density and intensely tune DMI via the Ruderman-Kittel-Kasuya-Yosida mechanism. The resultant giant topological Hall resistivity of 1.4 uohm.cm at -5.2V (about 460% of the zero-bias value) is larger than most of the known magnetic materials. Theoretical analysis indicates that such a large topological Hall effect originates from the two-dimensional Bloch-type chiral spin textures stabilized by DMI, while the large anomalous Hall effect comes from the gapped Dirac nodal lines by spin-orbit interaction. Dual-intercalation in 2HTaS2 provides a model system to reveal the nature of DMI in the large family of TMDs and a promising way of gate tuning of DMI, which further enables an electrical control of the chiral spin textures and related electromagnetic phenomena.Comment: 21 pages, 4 figure

    Association of MBL2 gene polymorphisms with pulmonary tuberculosis susceptibility: Trial sequence meta-analysis as evidence

    Get PDF
    © 2019 Mandal et al. Background: Mannose-binding lectin (MBL) or mannose-binding protein (MBP), encoded by MBL2 gene and secreted by the liver, activates complement system through lectin pathway in innate immunity against the host’s infection. Conflictingly, a number of MBL2 variants, rs1800450 (A\u3eB), rs1800451 (A\u3eC), rs5030737 (A\u3eD), rs7096206 (Y\u3eX), rs11003125 (H\u3eL), and rs7095891 (P\u3eQ) allele, have been found to be associated with compromised serum levels and pulmonary tuberculosis (PTB) susceptibility. The present meta-analysis study was performed to evaluate the potential association of these MBL2 gene variants with PTB susceptibility. Materials and methods: A quantitative synthesis was performed on PubMed (Medline), EMBASE, and Google Scholar web database searches. A meta-analysis was performed to calculate the pooled odds ratios and 95% CIs for all the genetic models. Results: A total of 14 eligible studies were included to analyze their pooled data for associations between alleles, genotypes, and minor allele carriers. The statistical analysis revealed the significant reduced PTB risk with homozygous variant genotype of rs1800451 polymorphism (CC vs AA: P=0.043; OR =0.828, 95% CI =0.689–0.994). Contrary to this, the variant allele of rs5030737 polymorphism showed association with increased PTB risk (D vs A: P=0.026; OR =1.563, 95% CI =1.054–2.317). However, the other genetic models of rs1800450 (A\u3eB), rs7096206 (Y\u3eX), and rs11003125 (H\u3eL) MBL2 gene polymorphisms did not divulge any association with PTB susceptibility. Conclusion: The current meta-analysis concludes that rs1800451 (A\u3eC) and rs5030737 (A\u3eD) polymorphisms of MBL2 gene play a significant role in PTB susceptibility. Further, well-designed epidemiological studies with larger sample size including consideration of environmental factors are warranted for the future

    Identifying cerebral microstructural changes in patients with COVID-19 using MRI: A systematic review

    No full text
    Coronavirus disease 2019 (COVID-19) is an epidemic viral disease caused by a novel severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2). Despite the excessive number of neurological articles that have investigated the effect of COVID-19 on the brain from the neurological point of view, very few studies have investigated the impact of COVID-19 on the cerebral microstructure and function of the brain. The aim of this study was to summarize the results of the existing studies on cerebral microstructural changes in COVID-19 patients, specifically the use of quantitative volumetric analysis, blood oxygen level dependent (BOLD), and diffusion tensor imaging (DTI). We searched PubMed/MEDLINE, ScienceDirect, Semantic Scholar, and Google Scholar from December 2020 to April 2022. A well-constructed search strategy was used to identify the articles for review. Seven research articles have met this study's inclusion and exclusion criteria, which have applied neuroimaging tools such as quantitative volumetric analysis, BOLD, and DTI to investigate cerebral microstructure changes in COVID-19 patients. A significant effect of COVID-19 was found in the brain such as hypoperfusion of cerebral blood flow, increased gray matter (GM) volume, and reduced cortical thickness. The insula and thalamic radiation were the most frequent GM region and white matter tract, respectively, that are involved in SARS-CoV-2. COVID-19 was found to be associated with changes in cerebral microstructures. These abnormalities in brain areas might lead to be associated with behaviors, mental and neurological alterations that need to be considered carefully in future studies

    Low Radiation Dose Implications in Obese Abdominal Computed Tomography Imaging

    No full text
    The aim of this study was to evaluate the implications of low radiation dose in abdominal computed tomography (CT) when combined with noise reduction filters and to see if this approach can overcome the challenges that arise while scanning obese patients. Anthropomorphic phantoms layered with and without 3-cm-thick circumferential animal fat packs to simulate different sized patients were scanned using a 128-slice multidetector CT (MDCT) scanner. Abdominal protocols (n = 12) were applied using various tube currents (150, 200, 250, and 300 mA) and tube voltages (100, 120, and 140 kVp). MOSFET dosimeters measured the internal organ dose. All images were reconstructed with filtered back projection (FBP) and different iterative reconstruction (IR) strengths (SAFIRE 3, SAFIRE 4, and SAFIRE 5) techniques and objective noise was measured within three regions of interests (ROIs) at the level of L4–L5. Organ doses varied from 0.34–56.2 mGy; the colon received the highest doses for both phantom sizes. Compared to the normal-weighted phantom, the obese phantom was associated with an approximately 20% decrease in effective dose. The 100 kVp procedure resulted in a 40% lower effective dose (p < 0.05) compared to at 120 kVp and the associated noise increase was improved by increasing the IR (5) use, which resulted in a 60% noise reduction compared to when using FBP (p < 0.05). When combined with iterative reconstruction, the low-kVp approach is feasible for obese patients in order to optimize radiation dose and maintain objective image quality
    corecore