3,022 research outputs found

    Perforin gene transfer into hematopoietic stem cells improves immune dysregulation in murine models of perforin deficiency

    Get PDF
    Defects in perforin lead to the failure of T and NK cell cytotoxicity, hypercytokinemia, and the immune dysregulatory condition known as familial hemophagocytic lymphohistiocytosis (FHL). The only curative treatment is allogeneic hematopoietic stem cell transplantation which carries substantial risks. We used lentiviral vectors (LV) expressing the human perforin gene, under the transcriptional control of the ubiquitous phosphoglycerate kinase promoter or a lineage-specific perforin promoter, to correct the defect in different murine models. Following LV-mediated gene transfer into progenitor cells from perforin-deficient mice, we observed perforin expression in mature T and NK cells, and there was no evidence of progenitor cell toxicity when transplanted into irradiated recipients. The resulting perforin-reconstituted NK cells showed partial recovery of cytotoxicity, and we observed full recovery of cytotoxicity in polyclonal CD8 + T cells. Furthermore, reconstituted T cells with defined antigen specificity displayed normal cytotoxic function against peptide-loaded targets. Reconstituted CD8 + lymphoblasts had reduced interferon-γ secretion following stimulation in vitro, suggesting restoration of normal immune regulation. Finally, upon viral challenge, mice with >30% engraftment of gene-modified cells exhibited reduction of cytokine hypersecretion and cytopenias. This study demonstrates the potential of hematopoietic stem cell gene therapy as a curative treatment for perforin-deficient FHL

    Two-Point Functions and S-Parameter in QCD-like Theories

    Full text link
    We calculated the vector, axial-vector, scalar and pseudo-scalar two-point functions up to two-loop level in the low-energy effective field theory for three different QCD-like theories. In addition we also calculated the pseudo-scalar decay constant GMG_M. The QCD-like theories we used are those with fermions in a complex, real or pseudo-real representation with in general n flavours. These case correspond to global symmetry breaking pattern of SU(n)L×SU(n)RSU(n)VSU(n)_L\times SU(n)_R\to SU(n)_V, SU(2n)SO(2n)SU(2n)\to SO(2n) or SU(2n)Sp(2n)SU(2n)\to Sp(2n). We also estimated the S parameter for those different theories.Comment: 29 page

    Quercetin elevates p27Kip1 and arrests both primary and HPV16 E6/E7 transformed human keratinocytes in G1

    Get PDF
    Our previous work with primary bovine fibroblasts demonstrated that quercetin, a potent mutagen found in high levels in bracken fern (Pteridium aquilinum), arrested cells in G1 and G2/M, in correlation with p53 activation. The expression of bovine papillomavirus type 4 (BPV-4) E7 overcame this arrest and lead to the development of tumorigenic cells lines (Beniston et al., 2001). Given the possible link between papillomavirus infection, bracken fern in the diet and cancer of the upper gastrointestinal (GI) tract in humans, we investigated whether a similar situation would occur in human cells transformed by human papillomavirus type 16 (HPV-16) oncoproteins. Quercetin arrested primary human foreskin keratinocytes in G1. Arrest was linked to an elevation of the cyclin-dependent kinase inhibitor (cdki) p27Kip1. Expression of the HPV16 E6 and E7 oncoproteins in transformed cells failed to abrogate cell cycle arrest. G1 arrest in the transformed cells was also linked to an increase of p27Kip1 with a concomitant reduction of cyclin E-associated kinase activity. This elevation of p27Kip1 was due not only to increased protein half-life, but also to increased mRNA transcription

    Variation in Seed Dormancy Quantitative Trait Loci in Arabidopsis thaliana Originating from One Site

    Get PDF
    A Quantitative Trait Locus (QTL) analysis was performed using two novel Recombinant Inbred Line (RIL) populations, derived from the progeny between two Arabidopsis thaliana genotypes collected at the same site in Kyoto (Japan) crossed with the reference laboratory strain Landsberg erecta (Ler). We used these two RIL populations to determine the genetic basis of seed dormancy and flowering time, which are assumed to be the main traits controlling life history variation in Arabidopsis. The analysis revealed quantitative variation for seed dormancy that is associated with allelic variation at the seed dormancy QTL DOG1 (for Delay Of Germination 1) in one population and at DOG6 in both. These DOG QTL have been previously identified using mapping populations derived from accessions collected at different sites around the world. Genetic variation within a population may enhance its ability to respond accurately to variation within and between seasons. In contrast, variation for flowering time, which also segregated within each mapping population, is mainly governed by the same QTL

    The Universal One-Loop Effective Action

    Full text link
    We present the universal one-loop effective action for all operators of dimension up to six obtained by integrating out massive, non-degenerate multiplets. Our general expression may be applied to loops of heavy fermions or bosons, and has been checked against partial results available in the literature. The broad applicability of this approach simplifies one-loop matching from an ultraviolet model to a lower-energy effective field theory (EFT), a procedure which is now reduced to the evaluation of a combination of matrices in our universal expression, without any loop integrals to evaluate. We illustrate the relationship of our results to the Standard Model (SM) EFT, using as an example the supersymmetric stop and sbottom squark Lagrangian and extracting from our universal expression the Wilson coefficients of dimension-six operators composed of SM fields.Comment: 30 pages, v2 contains additional comments and corrects typos, version accepted for publication in JHE

    Enhancement of mouse hematopoietic stem/progenitor cell function via transient gene delivery using integration-deficient lentiviral vectors

    Get PDF
    Integration-deficient lentiviruses (IdLVs) deliver genes effectively to tissues but are lost rapidly from dividing cells. This property can be harnessed to express transgenes transiently to manipulate cell biology. Here, we demonstrate the utility of short-term gene expression to improve functional potency of hematopoietic stem and progenitor cells (HSPCs) during transplantation by delivering HOXB4 and Angptl3 using IdLVs to enhance the engraftment of HSPCs. Constitutive overexpression of either of these genes is likely to be undesirable, but the transient nature of IdLVs reduces this risk and those associated with unsolicited gene expression in daughter cells. Transient expression led to increased multilineage hematopoietic engraftment in in vivo competitive repopulation assays without the side effects reported in constitutive overexpression models. Adult stem cell fate has not been programmed previously using IdLVs, but we demonstrate that these transient gene expression tools can produce clinically relevant alterations or be applied to investigate basic biology

    The role of ongoing dendritic oscillations in single-neuron dynamics

    Get PDF
    The dendritic tree contributes significantly to the elementary computations a neuron performs while converting its synaptic inputs into action potential output. Traditionally, these computations have been characterized as temporally local, near-instantaneous mappings from the current input of the cell to its current output, brought about by somatic summation of dendritic contributions that are generated in spatially localized functional compartments. However, recent evidence about the presence of oscillations in dendrites suggests a qualitatively different mode of operation: the instantaneous phase of such oscillations can depend on a long history of inputs, and under appropriate conditions, even dendritic oscillators that are remote may interact through synchronization. Here, we develop a mathematical framework to analyze the interactions of local dendritic oscillations, and the way these interactions influence single cell computations. Combining weakly coupled oscillator methods with cable theoretic arguments, we derive phase-locking states for multiple oscillating dendritic compartments. We characterize how the phase-locking properties depend on key parameters of the oscillating dendrite: the electrotonic properties of the (active) dendritic segment, and the intrinsic properties of the dendritic oscillators. As a direct consequence, we show how input to the dendrites can modulate phase-locking behavior and hence global dendritic coherence. In turn, dendritic coherence is able to gate the integration and propagation of synaptic signals to the soma, ultimately leading to an effective control of somatic spike generation. Our results suggest that dendritic oscillations enable the dendritic tree to operate on more global temporal and spatial scales than previously thought

    What Should Vaccine Developers Ask? Simulation of the Effectiveness of Malaria Vaccines

    Get PDF
    A number of different malaria vaccine candidates are currently in pre-clinical or clinical development. Even though they vary greatly in their characteristics, it is unlikely that any of them will provide long-lasting sterilizing immunity against the malaria parasite. There is great uncertainty about what the minimal vaccine profile should be before registration is worthwhile; how to allocate resources between different candidates with different profiles; which candidates to consider combining; and what deployment strategies to consider.We use previously published stochastic simulation models, calibrated against extensive epidemiological data, to make quantitative predictions of the population effects of malaria vaccines on malaria transmission, morbidity and mortality. The models are fitted and simulations obtained via volunteer computing. We consider a range of endemic malaria settings with deployment of vaccines via the Expanded program on immunization (EPI), with and without additional booster doses, and also via 5-yearly mass campaigns for a range of coverages. The simulation scenarios account for the dynamic effects of natural and vaccine induced immunity, for treatment of clinical episodes, and for births, ageing and deaths in the cohort. Simulated pre-erythrocytic vaccines have greatest benefits in low endemic settings (<EIR of 10.5) where between 12% and 14% of all deaths are averted when initial efficacy is 50%. In some high transmission scenarios (>EIR of 84) PEV may lead to increased incidence of severe disease in the long term, if efficacy is moderate to low (<70%). Blood stage vaccines (BSV) are most useful in high transmission settings, and are comparable to PEV for low transmission settings. Combinations of PEV and BSV generally perform little better than the best of the contributing components. A minimum half-life of protection of 2–3 years appears to be a precondition for substantial epidemiological effects. Herd immunity effects can be achieved with even moderately effective (>20%) malaria vaccines (either PEV or BSV) when deployed through mass campaigns targeting all age-groups as well as EPI, and especially if combined with highly efficacious transmission-blocking components.We present for the first time a stochastic simulation approach to compare likely effects on morbidity, mortality and transmission of a range of malaria vaccines and vaccine combinations in realistic epidemiological and health systems settings. The results raise several issues for vaccine clinical development, in particular appropriateness of vaccine types for different transmission settings; the need to assess transmission to the vector and duration of protection; and the importance of deployment additional to the EPI, which again may make the issue of number of doses required more critical. To test the validity and robustness of our conclusions there is a need for further modeling (and, of course, field research) using alternative formulations for both natural and vaccine induced immunity. Evaluation of alternative deployment strategies outside EPI needs to consider the operational implications of different approaches to mass vaccination

    Linking habitat quality with genetic diversity: a lesson from great bustards in Spain

    Get PDF
    P. 411-419The effects of habitat loss and fragmentation on the genetic structure and variability of wild populations have received wide empirical support and theoretical formalization. By contrast, the effects of habitat quality seem largely underinvestigated, partly due to technical difficulties in properly assessing habitat quality. In this study, we combine geographic information system (GIS)-based habitat-quality modelling with a landscape genetics approach based on mitochondrial DNA markers to evaluate the possible influence of habitat quality on the levels and distribution of genetic diversity in a range of natural populations (n = 15) of Otis tarda throughout Spain. Ninety-three percent of the population represented by our countrywide sample lives in good-quality habitats, while 4.5% and 2.5% occur respectively in intermediate and poor habitats. Habitat quality was highly correlated with patch size, population size and population density, indicating the reliability and predictive power of the habitat suitability model. Genetic diversity was significantly correlated with habitat quality, size and density of the population, but not with patch size. Three of a total of 20 existing matrilineages from the species’ current genetic pool are restricted to poor-quality habitats. This study therefore highlights the importance of considering both population genetics and habitat quality in a species of high conservation priority.S
    corecore