749 research outputs found

    One-Shot Learning for Periocular Recognition: Exploring the Effect of Domain Adaptation and Data Bias on Deep Representations

    Full text link
    One weakness of machine-learning algorithms is the need to train the models for a new task. This presents a specific challenge for biometric recognition due to the dynamic nature of databases and, in some instances, the reliance on subject collaboration for data collection. In this paper, we investigate the behavior of deep representations in widely used CNN models under extreme data scarcity for One-Shot periocular recognition, a biometric recognition task. We analyze the outputs of CNN layers as identity-representing feature vectors. We examine the impact of Domain Adaptation on the network layers' output for unseen data and evaluate the method's robustness concerning data normalization and generalization of the best-performing layer. We improved state-of-the-art results that made use of networks trained with biometric datasets with millions of images and fine-tuned for the target periocular dataset by utilizing out-of-the-box CNNs trained for the ImageNet Recognition Challenge and standard computer vision algorithms. For example, for the Cross-Eyed dataset, we could reduce the EER by 67% and 79% (from 1.70% and 3.41% to 0.56% and 0.71%) in the Close-World and Open-World protocols, respectively, for the periocular case. We also demonstrate that traditional algorithms like SIFT can outperform CNNs in situations with limited data or scenarios where the network has not been trained with the test classes like the Open-World mode. SIFT alone was able to reduce the EER by 64% and 71.6% (from 1.7% and 3.41% to 0.6% and 0.97%) for Cross-Eyed in the Close-World and Open-World protocols, respectively, and a reduction of 4.6% (from 3.94% to 3.76%) in the PolyU database for the Open-World and single biometric case.Comment: Submitted preprint to IEE Acces

    Cross-Spectral Periocular Recognition with Conditional Adversarial Networks

    Full text link
    This work addresses the challenge of comparing periocular images captured in different spectra, which is known to produce significant drops in performance in comparison to operating in the same spectrum. We propose the use of Conditional Generative Adversarial Networks, trained to con-vert periocular images between visible and near-infrared spectra, so that biometric verification is carried out in the same spectrum. The proposed setup allows the use of existing feature methods typically optimized to operate in a single spectrum. Recognition experiments are done using a number of off-the-shelf periocular comparators based both on hand-crafted features and CNN descriptors. Using the Hong Kong Polytechnic University Cross-Spectral Iris Images Database (PolyU) as benchmark dataset, our experiments show that cross-spectral performance is substantially improved if both images are converted to the same spectrum, in comparison to matching features extracted from images in different spectra. In addition to this, we fine-tune a CNN based on the ResNet50 architecture, obtaining a cross-spectral periocular performance of EER=1%, and GAR>99% @ FAR=1%, which is comparable to the state-of-the-art with the PolyU database.Comment: Accepted for publication at 2020 International Joint Conference on Biometrics (IJCB 2020

    A review of schemes for fingerprint image quality computation

    Full text link
    Fingerprint image quality affects heavily the performance of fingerprint recognition systems. This paper reviews existing approaches for fingerprint image quality computation. We also implement, test and compare a selection of them using the MCYT database including 9000 fingerprint images. Experimental results show that most of the algorithms behave similarly.Comment: Published at 3rd COST-275 Workshop on Biometrics on the Internet. arXiv admin note: text overlap with arXiv:2111.0743

    FIVA: Facial Image and Video Anonymization and Anonymization Defense

    Full text link
    In this paper, we present a new approach for facial anonymization in images and videos, abbreviated as FIVA. Our proposed method is able to maintain the same face anonymization consistently over frames with our suggested identity-tracking and guarantees a strong difference from the original face. FIVA allows for 0 true positives for a false acceptance rate of 0.001. Our work considers the important security issue of reconstruction attacks and investigates adversarial noise, uniform noise, and parameter noise to disrupt reconstruction attacks. In this regard, we apply different defense and protection methods against these privacy threats to demonstrate the scalability of FIVA. On top of this, we also show that reconstruction attack models can be used for detection of deep fakes. Last but not least, we provide experimental results showing how FIVA can even enable face swapping, which is purely trained on a single target image.Comment: Accepted to ICCVW 2023 - DFAD 202

    Log-Likelihood Score Level Fusion for Improved Cross-Sensor Smartphone Periocular Recognition

    Full text link
    The proliferation of cameras and personal devices results in a wide variability of imaging conditions, producing large intra-class variations and a significant performance drop when images from heterogeneous environments are compared. However, many applications require to deal with data from different sources regularly, thus needing to overcome these interoperability problems. Here, we employ fusion of several comparators to improve periocular performance when images from different smartphones are compared. We use a probabilistic fusion framework based on linear logistic regression, in which fused scores tend to be log-likelihood ratios, obtaining a reduction in cross-sensor EER of up to 40% due to the fusion. Our framework also provides an elegant and simple solution to handle signals from different devices, since same-sensor and cross-sensor score distributions are aligned and mapped to a common probabilistic domain. This allows the use of Bayes thresholds for optimal decision-making, eliminating the need of sensor-specific thresholds, which is essential in operational conditions because the threshold setting critically determines the accuracy of the authentication process in many applications.Comment: Published at Proc. 25th European Signal Processing Conference, EUSIPCO 2017. arXiv admin note: text overlap with arXiv:1902.0812

    Exploring Deep Learning Image Super-Resolution for Iris Recognition

    Full text link
    In this work we test the ability of deep learning methods to provide an end-to-end mapping between low and high resolution images applying it to the iris recognition problem. Here, we propose the use of two deep learning single-image super-resolution approaches: Stacked Auto-Encoders (SAE) and Convolutional Neural Networks (CNN) with the most possible lightweight structure to achieve fast speed, preserve local information and reduce artifacts at the same time. We validate the methods with a database of 1.872 near-infrared iris images with quality assessment and recognition experiments showing the superiority of deep learning approaches over the compared algorithms.Comment: Published at Proc. 25th European Signal Processing Conference, EUSIPCO 201
    • …
    corecore