26,469 research outputs found
Recommended from our members
The relationship of drug reimbursement with the price and the quality of pharmaceutical innovations
This paper studies the strategic interaction between pharmaceutical firms' pricing decisions and government agencies' reimbursement decisions which discriminate between patients by giving reimbursement rights to patients for whom the drug is most effective. We show that if the reimbursement decision preceeds the pricing decision, the agency only reimburses some patients if the private and public health benefits from the new drug diverge. That is, when (i) there are large externalities of consuming the drug and (ii) the difference in costs between the new drug and the alternative treatment is large. Alternatively, if the firm can commit to a price in advance of the reimbursement decision, we identify a strategic effect which implies that by committing to a high price ex ante, the firm can force a listing outcome and make the agency more willing to reimburse than in the absence of commitment
On the Potential of Leptonic Minimal Flavour Violation
Minimal Flavour Violation can be realized in several ways in the lepton
sector due to the possibility of Majorana neutrino mass terms. We derive the
scalar potential for the fields whose background values are the Yukawa
couplings, for the simplest See-Saw model with just two right-handed neutrinos,
and explore its minima. The Majorana character plays a distinctive role: the
minimum of the potential allows for large mixing angles -in contrast to the
simplest quark case- and predicts a maximal Majorana phase. This points in turn
to a strong correlation between neutrino mass hierarchy and mixing pattern.Comment: 6 pages; version published on Physics Letters
On the Whitham hierarchy: dressing scheme, string equations and additional symmetrie
A new description of the universal Whitham hierarchy in terms of a
factorization problem in the Lie group of canonical transformations is
provided. This scheme allows us to give a natural description of dressing
transformations, string equations and additional symmetries for the Whitham
hierarchy. We show how to dress any given solution and prove that any solution
of the hierarchy may be undressed, and therefore comes from a factorization of
a canonical transformation. A particulary important function, related to the
-function, appears as a potential of the hierarchy. We introduce a class
of string equations which extends and contains previous classes of string
equations considered by Krichever and by Takasaki and Takebe. The scheme is
also applied for an convenient derivation of additional symmetries. Moreover,
new functional symmetries of the Zakharov extension of the Benney gas equations
are given and the action of additional symmetries over the potential in terms
of linear PDEs is characterized
On the Whitham hierarchy: dressing scheme, string equations and additional symmetrie
A new description of the universal Whitham hierarchy in terms of a
factorization problem in the Lie group of canonical transformations is
provided. This scheme allows us to give a natural description of dressing
transformations, string equations and additional symmetries for the Whitham
hierarchy. We show how to dress any given solution and prove that any solution
of the hierarchy may be undressed, and therefore comes from a factorization of
a canonical transformation. A particulary important function, related to the
-function, appears as a potential of the hierarchy. We introduce a class
of string equations which extends and contains previous classes of string
equations considered by Krichever and by Takasaki and Takebe. The scheme is
also applied for an convenient derivation of additional symmetries. Moreover,
new functional symmetries of the Zakharov extension of the Benney gas equations
are given and the action of additional symmetries over the potential in terms
of linear PDEs is characterized
Effects of galaxy interactions in different environments
We analyse star formation rates derived from photometric and spectroscopic
data of galaxies in pairs in different environments using the 2dF Galaxy
Redshift Survey (2dFGRS) and the Sloan Digital Sky Survey (SDSS). The two
samples comprise several thousand pairs, suitable to explore into detail the
dependence of star formation activity in pairs on orbital parameters and global
environment. We use the projected galaxy density derived from the fifth nearest
neighbour of each galaxy, with convenient luminosity thresholds to characterise
environment in both surveys in a consistent way. Star formation activity is
derived through the parameter in 2dFGRS and through the star formation
rate normalised to the total mass in stars, , given by Brinchmann et
al. (2004) in the second data release SDSS-DR2. For both galaxy pair catalogs,
the star formation birth rate parameter is a strong function of the global
environment and orbital parameters. Our analysis on SDSS pairs confirms
previous results found with the 2dFGRS where suitable thresholds for the star
formation activity induced by interactions are estimated at a projected
distance r_{\rm p} = 100 \kpc and a relative velocity km
. We observe that galaxy interactions are more effective at triggering
important star formation activity in low and moderate density environments with
respect to the control sample of galaxies without a close companion. Although
close pairs have a larger fraction of actively star-forming galaxies, they also
exhibit a greater fraction of red galaxies with respect to those systems
without a close companion, an effect that may indicate that dust stirred up
during encounters could be affecting colours and, partially, obscuring
tidally-induced star formation.Comment: accepted MNRA
Quantum control of the motional states of trapped ions through fast switching of trapping potentials
We propose a new scheme for supplying voltages to the electrodes of
microfabricated ion traps, enabling access to a regime in which changes to the
trapping potential are made on timescales much shorter than the period of the
secular oscillation frequencies of the trapped ions. This opens up
possibilities for speeding up the transport of ions in segmented ion traps and
also provides access to control of multiple ions in a string faster than the
Coulomb interaction between them. We perform a theoretical study of ion
transport using these methods in a surface-electrode trap, characterizing the
precision required for a number of important control parameters. We also
consider the possibilities and limitations for generating motional state
squeezing using these techniques, which could be used as a basis for
investigations of Gaussian-state entanglement.Comment: Accepted by New Journal of Physic
- …