4 research outputs found

    Characteristics of proton velocity distribution functions in the near-lunar wake from Chandrayaan-1/SWIM observations

    Get PDF
    Due to the high absorption of solar wind plasma on the lunar dayside, a large scale wake structure is formed downstream of the Moon. However, recent in-situ observations have revealed the presence of protons in the near-lunar wake (100 km to 200 km from the surface). The solar wind, either directly or after interaction with the lunar surface (including magnetic anomalies), is the source of these protons in the near-wake region. Using the entire data from the SWIM sensor of the SARA experiment onboard Chandrayaan-1, we analysed the velocity distribution of the protons observed in the near-lunar wake. The average velocity distribution functions, computed in the solar wind rest frame, were further separated based on the angle between the upstream solar wind velocity and the IMF. Several proton populations were identified from the velocity distribution and their possible entry mechanism were inferred based on the characteristics of the velocity distribution. These entry mechanisms include (i) diffusion of solar wind protons into the wake along IMF, (ii) the solar wind protons with finite gyro-radii that are aided by the wake boundary electric field, (iii) solar wind protons with gyro-radii larger than lunar radii from the tail of the solar wind velocity distribution, and (iv) scattering of solar wind protons from the dayside lunar surface or from magnetic anomalies. In order to gain more insight into the entry mechanisms associated with different populations, backtracing is carried out for each of these populations. For most of the populations, the source of the protons obtained from backtracing is found to be in agreement with that inferred from the velocity distribution. There are few populations that could not be explained by the known mechanisms and remain unknown.Comment: 8 figures, paper accepted in Icarus (2016), http://dx.doi.org/10.1016/j.icarus.2016.01.03

    First Observation of Transport of Solar Wind Protons Scattered From Magnetic Anomalies Into the Near Lunar Wake: Observations by SARA/Chandrayaan-1

    Get PDF
    We report the first observational evidence for the transport of the solar wind protons scattered from the lunar magnetic anomaly (LMA) into the near wake region from SWIM/Sub‐keV Atom Reflecting Analyzer (SARA) aboard Chandrayaan‐1. These protons with high angular spread are observed in the near wake region for specific orientations of interplanetary magnetic field. The typical energy range is 600–1,000 eV, which is either smaller or comparable to that of solar wind. Using our backtracing model, the source region of these protons is found to be the large LMA at South Pole‐Aitken basin on the dayside, suggesting that these are solar wind protons forward scattered from LMA at the South Pole‐Aitken. The flux of these protons is ~5 × 10⁻⁎ of the solar wind proton flux, which is comparable to the proton population in near wake due to other known processes. Such protons can significantly affect the electromagnetic environment in near wake region
    corecore