3 research outputs found

    Auditory stimulation and deep learning predict awakening from coma after cardiac arrest.

    Get PDF
    Assessing the integrity of neural functions in coma after cardiac arrest remains an open challenge. Prognostication of coma outcome relies mainly on visual expert scoring of physiological signals, which is prone to subjectivity and leaves a considerable number of patients in a 'grey zone', with uncertain prognosis. Quantitative analysis of EEG responses to auditory stimuli can provide a window into neural functions in coma and information about patients' chances of awakening. However, responses to standardized auditory stimulation are far from being used in a clinical routine due to heterogeneous and cumbersome protocols. Here, we hypothesize that convolutional neural networks can assist in extracting interpretable patterns of EEG responses to auditory stimuli during the first day of coma that are predictive of patients' chances of awakening and survival at 3 months. We used convolutional neural networks (CNNs) to model single-trial EEG responses to auditory stimuli in the first day of coma, under standardized sedation and targeted temperature management, in a multicentre and multiprotocol patient cohort and predict outcome at 3 months. The use of CNNs resulted in a positive predictive power for predicting awakening of 0.83 ± 0.04 and 0.81 ± 0.06 and an area under the curve in predicting outcome of 0.69 ± 0.05 and 0.70 ± 0.05, for patients undergoing therapeutic hypothermia and normothermia, respectively. These results also persisted in a subset of patients that were in a clinical 'grey zone'. The network's confidence in predicting outcome was based on interpretable features: it strongly correlated to the neural synchrony and complexity of EEG responses and was modulated by independent clinical evaluations, such as the EEG reactivity, background burst-suppression or motor responses. Our results highlight the strong potential of interpretable deep learning algorithms in combination with auditory stimulation to improve prognostication of coma outcome

    Intrinsic neural timescales in the temporal lobe support an auditory processing hierarchy

    Get PDF
    During rest, intrinsic neural dynamics manifest at multiple timescales, which progressively increase along visual and somatosensory hierarchies. Theoretically, intrinsic timescales are thought to facilitate processing of external stimuli at multiple stages. However, direct links between timescales at rest and sensory processing, as well as translation to the auditory system are lacking. Here, we measured intracranial electroencephalography in 11 human patients with epilepsy (4 women), while listening to pure tones. We show that in the auditory network, intrinsic neural timescales progressively increase, while the spectral exponent flattens, from temporal to entorhinal cortex, hippocampus, and amygdala. Within the neocortex, intrinsic timescales exhibit spatial gradients that follow the temporal lobe anatomy. Crucially, intrinsic timescales at baseline can explain the latency of auditory responses: as intrinsic timescales increase, so do the single-electrode response onset and peak latencies. Our results suggest that the human auditory network exhibits a repertoire of intrinsic neural dynamics, which manifest in cortical gradients with millimeter resolution and may provide a variety of temporal windows to support auditory processing.SIGNIFICANCE STATEMENT:Endogenous neural dynamics are often characterized by their intrinsic timescales. These are thought to facilitate processing of external stimuli. However, a direct link between intrinsic timing at rest and sensory processing is missing. Here, with intracranial electroencephalography (iEEG), we show that intrinsic timescales progressively increase from temporal to entorhinal cortex, hippocampus, and amygdala. Intrinsic timescales at baseline can explain the variability in the timing of iEEG responses to sounds: cortical electrodes with fast timescales also show fast and short-lasting responses to auditory stimuli, which progressively increase in the hippocampus and amygdala. Our results suggest that a hierarchy of neural dynamics in the temporal lobe manifests across cortical and limbic structures and can explain the temporal richness of auditory responses

    Complementary roles of neural synchrony and complexity for indexing consciousness and chances of surviving in acute coma.

    Get PDF
    An open challenge in consciousness research is understanding how neural functions are altered by pathological loss of consciousness. To maintain consciousness, the brain needs synchronized communication of information across brain regions, and sufficient complexity in neural activity. Coordination of brain activity, typically indexed through measures of neural synchrony, has been shown to decrease when consciousness is lost and to reflect the clinical state of patients with disorders of consciousness. Moreover, when consciousness is lost, neural activity loses complexity, while the levels of neural noise, indexed by the slope of the electroencephalography (EEG) spectral exponent decrease. Although these properties have been well investigated in resting state activity, it remains unknown whether the sensory processing network, which has been shown to be preserved in coma, suffers from a loss of synchronization or information content. Here, we focused on acute coma and hypothesized that neural synchrony in response to auditory stimuli would reflect coma severity, while complexity, or neural noise, would reflect the presence or loss of consciousness. Results showed that neural synchrony of EEG signals was stronger for survivors than non-survivors and predictive of patients' outcome, but indistinguishable between survivors and healthy controls. Measures of neural complexity and neural noise were not informative of patients' outcome and had high or low values for patients compared to controls. Our results suggest different roles for neural synchrony and complexity in acute coma. Synchrony represents a precondition for consciousness, while complexity needs an equilibrium between high or low values to support conscious cognition
    corecore