9 research outputs found

    Ageing of integrated-planar Solid Oxide Fuel Cells

    Get PDF
    The ageing of Solid Oxide Fuel Cells (SOFCs) is a key problem because of the requirement of 50,000 hours to their lifetime in many applications. At present, such performance is still not attainable because degradation occurs at more than 1% per thousand hours under practical test conditions. In this thesis, the ageing of the Rolls Royce Fuel Cell Systems (RRFCS)Integrated Planar Solid Oxide Fuel Cell (IP-SOFC) was studied under different operating conditions, especially by accelerated degradation testing (ADT), in order to investigate the fuel cell stability and degradation behaviour under non-steady operating conditions for further improvement of the systems. This work demonstrates that the long-term durability of the IP-SOFC is very good when pure hydrogen is used as fuel. However, the introducing of even a small amount of methane in fuel has demonstrated the capacity to damage the IP-SOFC through the formation of carbon deposits on the anode surface. Future work is therefore required to identify viable alternative materials and optimal operating conditions

    Electrical, Thermal, and Morphological Properties of Poly (ethylene terephthalate)-Graphite Nanoplatlet Nanocomposites

    Get PDF
    Graphite nanoplatelets (GNP) were incorporated with poly(ethylene terephthalate) (PET) matrix by melt-compounding technique using minilab compounder to produce PET-GNP nanocomposites, and then the extruded nanocomposites were compressed using compression molding to obtain films of 1 mm thickness. Percolation threshold value was determined using percolation theory. The electrical conductivity, morphology, and thermal behaviors of these nanocomposites were investigated at different contents of GNP, that is, below, around, and above its percolation threshold value. The results demonstrated that the addition of GNP at loading >5 wt.% made electrically conductive nanocomposites. An excellent electrical conductivity of ~1 S/m was obtained at 15 wt.% of GNP loading. The nanocomposites showed a typical insulator-conductor transition with a percolation threshold value of 5.7 wt.% of GNP. In addition, increasing screw speed enhanced the conductivity of the nanocomposites above its threshold value by ~2.5 orders of magnitude; this behavior is attributed to improved dispersion of these nanoparticles into the PET matrix. Microscopies results exhibited no indication of aggregations at 2 wt.% of GNP; however, some rolling up at 6 wt.% of GNP contents was observed, indicating that a conductive network has been formed, whereas more agglomeration and rolling up could be seen as the GNP content is increased in the PET matrix. These agglomerations reduced their aspect ratio and then reduced their reinforcement efficiency. NP loading (>2 wt.%) increased degree of crystallinity and improved thermal stability of matrix slightly, suggesting that 2 wt.% of GNP is more than enough to nucleate the matrix

    Binder-Free Electrode Based on ZnO Nanorods Directly Grown on Aluminum Substrate for High Performance Supercapacitors

    No full text
    Herein, for the first time, the growth of ZnO nanorods directly on aluminum (Al) substrate via a low temperature (80 °C) wet chemical method, and used as binder-free electrode for supercapacitors were reported. XRD pattern and HRTEM images showed that high crystalline nanorods grown on Al substrate with c-axis orientation. Morphological studies revealed that the nanorods possessed well defined hexagon phase with length and diameter of ~2 µm and 100–180 nm, respectively. Raman spectrum of ZnO nanorods showed that the characteristic E2H mode corresponds to the vibration associated with the oxygen atoms of ZnO. The optical properties of ZnO nanorods studied using Room-temperature PL spectra revealed a near-band-edge (NBE) peak at ~388 nm emission and deep level (DLE) at ~507 nm. Electrochemical measurements showed that ZnO nanorods on Al substrate exhibited remarkably enhanced performance as electrode for supercapacitors with a value of specific capacitance of 394 F g−1 measured with scan rate of 20 mV s−1. This unique nanorods structures also exhibited excellent stability of >98% capacitance retention for 1000 cycles that were measured at 1A g−1. The presented easy and cost-effective method might open up the possibility for the mass production of binder-free electrodes for efficient electrochemical energy storage devices

    Role of promoters over yttria-zirconia supported Ni catalyst for dry reforming of methane

    No full text
    Abstract Dry reforming of methane (DRM) bears great hope for the catalytic community as well as environmentalists for its potential to convert two greenhouse gases, CH4 and CO2, together into synthetic feedstock “syngas”. The stable tetragonal zirconium yttrium oxide phase over the “Yttria‐zirconia supported Ni” catalyst (Ni/YZr) brings >70% CH4 conversion against 50% CH4 conversion over zirconia supported Ni catalyst) in 7 h time‐on‐stream (TOS). The use of the second metal oxide (MOx; M = Ho, Ga, Gd, Ba, Cs) in a small amount (4 wt%) over Ni/YZ catalyst is found to promote the catalytic activity further. Herein, we have prepared such metal‐promoted yttria‐zirconia supported Ni catalyst, employed them for DRM and characterized them with surface area porosity, X‐ray diffraction, spectroscopic techniques, temperature programmed techniques and transmission electron microscopy. A fine correlation of characterization results with catalytic activity brings out various useful information that would be useful for establishing yttria‐zirconia supported Ni catalyst for DRM. Ni stabilized over cubic zirconium holmium oxide phase in 5Ni4Ho/YZr catalyst, cubic zirconium gadolinium oxide phase in 5Ni4Gd/YZr catalyst and cubic zirconium barium oxide phase in 5Ni4Ba/YZr catalyst perform excellent toward DRM. Catalytically, 5Ni4Ho/YZr catalyst achieves CH4 conversion as high as ~85% whereas 5Ni4Ba/YZr and 5Ni4Gd/YZr show CH4 conversions of about ~80%. Even in 30 h TOS study, 5Ni4Ho/YZr catalyst showed >81% CH4 conversion with retaining highest H2/CO (0.97)

    Enhancing the Performance of a Metal-Free Self-Supported Carbon Felt-Based Supercapacitor with Facile Two-Step Electrochemical Activation

    No full text
    Carbon felt (CF) is an inexpensive carbon-based material that is highly conductive and features extraordinary inherent surface area. Using such a metal-free, low-cost material for energy storage applications can benefit their practical implementation; however, only limited success has been achieved using metal-free CF for supercapacitor electrodes. This work thoroughly studies a cost-effective and simple method for activating metal-free self-supported carbon felt. As-received CF samples were first chemically modified with an acidic mixture, then put through a time optimization two-step electrochemical treatment in inorganic salts. The initial oxidative exfoliation process enhances the fiber’s surface area and ultimately introduced oxygen functional groups to the surface, whereas the subsequent reduction process substantially improved the conductivity. We achieved a 205-fold enhancement of capacitance over the as-received CF, with a maximum specific capacitance of 205 Fg−1, while using a charging current density of 23 mAg−1. Additionally, we obtained a remarkable capacitance retention of 78% upon increasing the charging current from 0.4 to 1 Ag−1. Finally, the cyclic stability reached 87% capacitance retention after 2500 cycles. These results demonstrate the potential utility of electrochemically activated CF electrodes in supercapacitor devices
    corecore