21 research outputs found
Biocytin-Based Contrast Agents for Molecular Imaging: An Approach to Developing New In Vivo Neuroanatomical Tracers for MRI
One of the most striking characteristic of the brain is its profuse neuronal connectivity. Not surprisingly, the function of the nervous system critically depends on the spatiotemporal pattern of intercommunication between different regions of the brain. Both macro- and microscopic aspects of the wiring diagrams of brain circuits are relevant and need to be understood in order to cope with the complexity of the brain function. In this way, for instance, the long-range connections that carry the functional specification of cortical territories need to be studied together with the detailed microcircuits inside a cortical column. Moreover, the temporal dimension of these wiring diagrams must be investigated since neuronal networks are dynamic structures exhibiting context-dependent changes in synaptic weights (Canals et al., 2009) and numbers (Chklovskii et al., 2004). Investigations over the last decades strongly suggest that stimulus or task related neural activity is distributed over large parts of the brain, covering different cortical and sub-cortical areas. For a detailed understanding of brain function, it is of prime importance to understand the organization of the neuronal connections. To chart the anatomical connections between the various components of brain networks, the neuronal tract tracing technique has been proved to be very useful. Thus, experimental tools that allow the exploration of brain circuits at diverse organizational levels are mandatory for the understanding of brain intercommunication and information processing
Chapter Biocytin-Based Contrast Agents for Molecular Imaging: An Approach to Developing New In Vivo Neuroanatomical Tracers for MRI
Geology & the lithospher
Vascularization of Cytochrome Oxidase-Rich Blobs in the Primary Visual Cortex of Squirrel and Macaque Monkeys
The close correlation between energy supply by blood vessels and energy consumption by cellular processes in the brain is the basis of blood flow-related functional imaging techniques. Regional differences in vascular density can be detected using high-resolution functional magnetic resonance imaging. Therefore, inhomogeneities in vascularization might help to identify anatomically distinct areas noninvasively in vivo. It was reported previously that cytochrome oxidase-rich blobs in the striate cortex of squirrel monkeys are characterized by a notably higher vascular density (42% higher than interblob regions). However, blobs have so far never been identified in vivo on the basis of their vascular density. Here, we analyzed blobs of the primary visual cortex of squirrel monkeys and macaques with respect to the relationship between vascularization and cytochrome oxidase activity. By double staining with cytochrome oxidase enzyme histochemistry to define the blobs and collagen type IV immunohistochemistry to quantify the blood vessels, a close correlation between oxidative metabolism and vascularization was confirmed and quantified in detail. The vascular length density in cytochrome oxidase blobs was on average 4.5% higher than in the interblob regions, a difference almost one order of magnitude smaller than previously reported. Thus, the vascular density that is closely associated with local average metabolic activity is a structural equivalent of cerebral metabolism and blood flow. However, the quantitative differences in vascularization between blob and interblob regions are small and below the detectability threshold of the noninvasive hemodynamic imaging methods of today
The anterior and medial thalamic nuclei and the human limbic system: tracing the structural connectivity using diffusion-weighted imaging
The limbic system is a phylogenetically old, behaviorally defined system that serves as a center for emotions. It controls the expression of anger, fear, and joy and also influences sexual behavior, vegetative functions, and memory. The system comprises a collection of tel-, di-, and mesencephalic structures whose components have evolved and increased over time. Previous animal research indicates that the anterior nuclear group of the thalamus (ANT), as well as the habenula (Hb) and the adjacent mediodorsal nucleus (MD) each play a vital role in the limbic circuitry. Accordingly, diffusion imaging data of 730 subjects obtained from the Human Connectome Project and the masks of six nuclei (anterodorsal, anteromedial, anteroventral, lateral dorsal, Hb, and MD) served as seed regions for a direct probabilistic tracking to the rest of the brain using diffusion-weighted imaging. The results revealed that the ANT nuclei are part of the limbic and the memory system as they mainly connect via the mammillary tract, mammillary body, anterior commissure, fornix, and retrosplenial cortices to the hippocampus, amygdala, medio-temporal, orbito-frontal and occipital cortices. Furthermore, the ANT nuclei showed connections to the mesencephalon and brainstem to varying extents, a pattern rarely described in experimental findings. The habenula-usually defined as part of the epithalamus-was closely connected to the tectum opticum and seems to serve as a neuroanatomical hub between the visual and the limbic system, brainstem, and cerebellum. Finally, in contrast to experimental findings with tracer studies, directly determined connections of MD were mainly confined to the brainstem, while indirect MD fibers form a broad pathway connecting the hippocampus and medio-temporal areas with the mediofrontal cortex