586 research outputs found

    Childhood Peer Status and the Clustering of Adverse Living Conditions in Adulthood

    Get PDF
    Within the context of the school class, children attain a social position in the peer hierarchy to which varying amounts of status are attached. Several studies have shown that children’s peer status is associated with a wide range of social and health-related outcomes. These studies commonly target separate outcomes, paying little attention to the fact that such circumstances are likely to go hand in hand. The overarching aim of the present study was therefore to examine the impact of childhood peer status on the clustering of living conditions in adulthood. Based on a 1953 cohort born in Stockholm, Sweden, multinomial regression analysis demonstrated that children who had lower peer status also had exceedingly high risks of ending up in more problem-burdened clusters as adults. Moreover, these associations remained after adjusting for a variety of family-related circumstances. We conclude that peer status constitutes a central aspect of children’s upbringing with important consequences for subsequent life chances, over and above the influences originating from the family.childhood; peer status; cohort; life course; outcome profiles; living conditions

    Doping density, not valency, influences catalytic metal-assisted plasma etching of silicon

    Get PDF
    Metal-assisted plasma etching (MAPE) of silicon (Si) is an etching technique driven by the catalytic activity of metals such as gold in fluorine-based plasma environments. In this work, we investigated the role of the Si substrate by examining the effects of dopant concentration in both n- and p-type Si and dopant atom type in n-type Si in SF6/O2 mixed gas plasma. At the highest dopant concentrations, both n- and p-type Si initially exhibit inhibition of the MAPE-enhanced etching. As the etch progresses, MAPE initiates, resulting in catalytic etching of the underlying Si at the metal-Si interface. Interestingly, MAPE-enhanced etching increases with decreasing doping concentrations for both n-and type Si substrates, distinct from results for the similar but divergent, metal-assisted chemical etching of silicon in liquid. Our findings show that the metal-Si interface remains essential to MAPE, and surface enrichment of the dopant atoms or other surface chemistries and the size of metal nanoparticles can play roles in modulating catalytic activity

    Kinetic models in industrial biotechnology - Improving cell factory performance

    Get PDF
    An increasing number of industrial bioprocesses capitalize on living cells by using them as cell factories that convert sugars into chemicals. These processes range from the production of bulk chemicals in yeasts and bacteria to the synthesis of therapeutic proteins in mammalian cell lines. One of the tools in the continuous search for improved performance of such production systems is the development and application of mathematical models. To be of value for industrial biotechnology, mathematical models should be able to assist in the rational design of cell factory properties or in the production processes in which they are utilized. Kinetic models are particularly suitable towards this end because they are capable of representing the complex biochemistry of cells in a more complete way compared to most other types of models. They can, at least in principle, be used to in detail understand, predict, and evaluate the effects of adding, removing, or modifying molecular components of a cell factory and for supporting the design of the bioreactor or fermentation process. However, several challenges still remain before kinetic modeling will reach the degree of maturity required for routine application in industry. Here we review the current status of kinetic cell factory modeling. Emphasis is on modeling methodology concepts, including model network structure, kinetic rate expressions, parameter estimation, optimization methods, identifiability analysis, model reduction, and model validation, but several applications of kinetic models for the improvement of cell factories are also discussed

    Anagen hair follicles transplanted into mature human scars remodel fibrotic tissue

    Get PDF
    Despite the substantial impact of skin scarring on patients and the healthcare system, there is a lack of strategies to prevent scar formation, let alone methods to remodel mature scars. Here, we took a unique approach inspired by how healthy hairbearing skin undergoes physiological remodelling during the regular cycling of hair follicles. In this pilot clinical study, we tested if hair follicles transplanted into human scars can facilitate tissue regeneration and actively remodel fibrotic tissue, similar to how they remodel the healthy skin. We collected full-thickness skin biopsies and compared the morphology and transcriptional signature of fibrotic tissue before and after transplantation. We found that hair follicle tranplantation induced an increase in the epidermal thickness, interdigitation of the epidermal-dermal junction, dermal cell density, and blood vessel density. Remodelling of collagen type I fibres reduced the total collagen fraction, the proportion of thick fibres, and their alignment. Consistent with these morphological changes, we found a shift in the cytokine milieu of scars with a long-lasting inhibition of pro-fibrotic factors TGFÎČ1, IL13, and IL-6. Our results show that anagen hair follicles can attenuate the fibrotic phenotype, providing new insights for developing regenerative approaches to remodel mature scars

    Simulation of Light Antinucleus-Nucleus Interactions

    Full text link
    Creations of light anti-nuclei (anti-deuterium, anti-tritium, anti-He3 and anti-He4) are observed by collaborations at the LHC and RHIC accelerators. Some cosmic ray experiments are aimed to find the anti-nuclei in cosmic rays. To support the experimental studies of the anti-nuclei a Monte Carlo simulation of anti-nuclei interactions with matter is implemented in the Geant4 toolkit. The implementation combines practically all known theoretical approaches to the problem of antinucleon-nucleon interactions.Comment: 8 pages, 5 figure

    Peculiarities in produced particles emission in 208Pb + Ag(Br) interactions at 158 A GeV/c

    Full text link
    The angular structures of particles produced in 208Pb induced collisions with Ag(Br) nuclei in an emulsion detector at 158 A GeV/c have been investigated. Nonstatistical ring-like substructures in azimuthal plane of the collision have been found and their parameters have been determined. The indication on the formation of the ring-like substructures from two symmetrical emission cones - one in the forward and other in the backward direction in the center-of mass system have been obtained. The ring-like substructures parameters have been determined. The experimental results are in an agreement with I.M. Dremin idea, that mechanism of the ring-like substructures formation in nuclear collisions is similar to that of Cherenkov electromagnetic radiation.Comment: 10 pages, 7 figures, Report at the HADRON STRUCTURE'04 Conference, Smolenice, Slovakia, 30.8.-3.9.200

    Parton cascade description of relativistic heavy-ion collisions at CERN SPS energies ?

    Get PDF
    We examine Pb+Pb collisions at CERN SPS energy 158 A GeV, by employing the earlier developed and recently refined parton-cascade/cluster-hadronization model and its Monte Carlo implementation. This space-time model involves the dynamical interplay of perturbative QCD parton production and evolution, with non-perturbative parton-cluster formation and hadron production through cluster decays. Using computer simulations, we are able to follow the entwined time-evolution of parton and hadron degrees of freedom in both position and momentum space, from the instant of nuclear overlap to the final yield of particles. We present and discuss results for the multiplicity distributions, which agree well with the measured data from the CERN SPS, including those for K mesons. The transverse momentum distributions of the produced hadrons are also found to be in good agreement with the preliminary data measured by the NA49 and the WA98 collaboration for the collision of lead nuclei at the CERN SPS. The analysis of the time evolution of transverse energy deposited in the collision zone and the energy density suggests an existence of partonic matter for a time of more than 5 fm.Comment: 16 pages including 7 postscript figure

    Measurements of knee rotation-reliability of an external device in vivo

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Knee rotation plays an important part in knee kinematics during weight-bearing activities. An external device for measuring knee rotation (the Rottometer) has previously been evaluated for validity by simultaneous measurements of skeletal movements with Roentgen Stereometric Analysis (RSA). The aim of this study was to investigate the reliability of the device.</p> <p>Method</p> <p>The within-day and test-retest reliability as well as intertester reliability of the device in vivo was calculated. Torques of 3, 6 and 9 Nm and the examiner's apprehension of end-feel were used at 90°, 60° and 30° of knee flexion. Intraclass Correlation Coefficient <sub>2,1 </sub>(ICC <sub>2,1</sub>), 95% confidence interval (CI) of ICC and 95% CI between test trials and examiners were used as statistical tests.</p> <p>Result</p> <p>ICC<sub>2,1 </sub>ranged from 0.50 to 0.94 at all three flexion angles at 6 and 9 Nm as well as end-feel, and from 0.22 to 0.75 at 3 Nm applied torque.</p> <p>Conclusion</p> <p>The Rottometer was a reliable measurement instrument concerning knee rotation at the three different flexion angles (90°, 60° and 30°) with 6 and 9 Nm applied torques as well as the examiner's apprehension of end-feel. Three Nm was not a reliable torque. The most reliable measurements were made at 9 Nm applied torque.</p

    Relativistic Heavy--Ion Collisions in the Dynamical String--Parton Model

    Get PDF
    We develop and extend the dynamical string parton model. This model, which is based on the salient features of QCD, uses classical Nambu-Got\=o strings with the endpoints identified as partons, an invariant string breaking model of the hadronization process, and interactions described as quark-quark interactions. In this work, the original model is extended to include a phenomenological quantization of the mass of the strings, an analytical technique for treating the incident nucleons as a distribution of string configurations determined by the experimentally measured structure function, the inclusion of the gluonic content of the nucleon through the introduction of purely gluonic strings, and the use of a hard parton-parton interaction taken from perturbative QCD combined with a phenomenological soft interaction. The limited number of parameters in the model are adjusted to e+e−e^+e^- and pp --pp data. Utilizing these parameters, the first calculations of the model for pp --AA and AA--AA collisions are presented and found to be in reasonable agreement with a broad set of data.Comment: 26 pages of text with 23 Postscript figures placed in tex
    • 

    corecore