27 research outputs found

    Evaluation of the effects of the metal foams geometrical features on thermal and fluid-dynamical behavior in forced convection

    Get PDF
    Metal foams are a material, featuring interesting characteristics for the aeronautical and automotive fields because of their low specific weight, high thermal properties, and mechanical performances. In particular, this paper deals with thermal and fluid dynamic study of 24 open-cell aluminum EN43500 (AlSi10MnMg) metal foams produced by indirect additive manufacturing (I-AM), combining 3D printing and metal casting to obtain a controllable morphology. A study of foam behavior function of the morphological features (pores per inch (PPI), branch thickness (r), and edges morphology (smooth-regular)) was performed. The samples produced were heated by radiation and tested in an open wind circuit gallery to measure the fluid dynamic properties such as pressure drop (Delta p), inertial coefficient (f), and permeability (k), in an air forced convection flow. The thermal characterization was performed evaluating both the theoretical (k(th)) and effective (k(eff)) thermal conductivity of the foams. Also, the global heat transfer coefficient (HTCglobal) was evaluated with different airflow rates. Analysis of variance (ANoVA) was performed to figure out which geometrical parameters are significant during both thermal and fluid dynamic processes. The results obtained show how the controllable foam morphology can affect the involved parameters, leading to an ad hoc design for industrial applications that require high thermo-fluid-dynamical performances

    Design and mechanical characterization of voronoi structures manufactured by indirect additive manufacturing

    Get PDF
    Additive manufacturing (AM) is a production process for the fabrication of three-dimensional items characterized by complex geometries. Several technologies employ a localized melting of metal dust through the application of focused energy sources, such as lasers or electron beams, on a powder bed. Despite the high potential of AM, numerous burdens afflict this production technology; for example, the few materials available, thermal stress due to the focused thermal source, low surface finishing, anisotropic properties, and the high cost of raw materials and the manufacturing process. In this paper, the combination by AM of meltable resins with metal casting for an indirect additive manufacturing (I-AM) is proposed. The process is applied to the production of open cells metal foams, similar in shape to the products available in commerce. However, their cellular structure features were designed and optimized by graphical editor Grasshopper®. The metal foams produced by AM were cast with a lost wax process and compared with commercial metal foams by means of compression tests

    Investigating curcumin/intestinal epithelium interaction in a millifluidic bioreactor

    Get PDF
    Multidrug resistance is still an obstacle for chemotherapeutic treatments. One of the proteins involved in this phenomenon is the P-glycoprotein, P-gp, which is known to be responsible for the efflux of therapeutic substances from the cell cytoplasm. To date, the identification of a drug that can efficiently inhibit P-gp activity remains a challenge, nevertheless some studies have identified natural compounds suitable for that purpose. Amongst them, curcumin has shown an inhibitory effect on the protein in in vitro studies using Caco-2 cells. To understand if flow can modulate the influence of curcumin on the protein’s activity, we studied the uptake of a P-gp substrate under static and dynamic conditions. Caco-2 cells were cultured in bioreactors and in Transwells and the basolateral transport of rhodamine-123 was assessed in the two systems as a function of the P-gp activity. Experiments were performed with and without pre-treatment of the cells with an extract of curcumin or an arylmethyloxy-phenyl derivative to evaluate the inhibitory effect of the natural substance with respect to a synthetic compound. The results indicated that the P-gp activity of the cells cultured in the bioreactors was intrinsically lower, and that the effect of both natural and synthetic inhibitors was up modulated by the presence of flow. Our study underlies the fact that the use of more sophisticated and physiologically relevant in vitro models can bring new insights on the therapeutic effects of natural substances such as curcumin

    Neural network implementation for the prediction of load curves of a flat head indenter on hot aluminum alloy

    Get PDF
    The indentation test performed by means of a flat-ended indenter is a valuable non-destructive method for assessment of metals at a local scale. Particularly, from the indentation curves it is possible to achieve several mechanical properties. The aim of this paper is the implementation of an artificial neural network for the prediction of the indentation load as a function of the penetration depth for an aluminium substrate. In particular, the neural network is addressed to the mechanical characterization of the bulk in function of temperature and indentation rate. The results obtained showed a high accuracy in curves prediction

    Improvement of thermal properties of micro head engine electroplated by graphene: experimental and thermal simulation

    No full text
    The present work deals with to improve knowledge of the mechanism of deposition of graphene on a complex geometry. The component of this study is an aluminum micro head engine that represents an interesting study case for its application in the field of heat dissipation. It has been coated with copper and graphene nanoplatelets by an electrodeposition process. The tests are conducted by realizing a system heat source similar to engine thermal behavior. The analysis has been developed on a micro head engine with a comparison between thermography results and finite element method (FEM) thermal analysis by commercial software Ansys. A three-dimensional heat conduction model in the coating structure was built, based on which FEM simulation was done. The influence of convection conditions has been evaluated by a comparison with FEM analysis without computational fluid dynamics simulations. The increase of thermal conductivity of coated specimen has been evaluated with the original one. Data analysis was performed by a comparison with 2-norm of fitting curves between the laboratory tests and simulations

    Design and thermal comparison of random structures realized by indirect additive manufacturing

    No full text
    Additive manufacturing (AM) processes are used to fabricate three-dimensional complex geometries. There are several technologies that use laser or electron beam over metal powder beds. However, the direct AM processes have inconveniences such as specific set of materials, high thermal stress traced, high local energy absorbed, poor surface finish, anisotropic properties, high cost of material powder, and manufacturing with high-power beams. In this paper, an alternative process was developed. An indirect additive manufacturing (I-AM) combining a 3D print of castable resin and metal casting in order to obtain a cellular structure similar in shape to commercial metal foams but completely definable as design features was developed. Design of the cellular structure was made by the graphical algorithm editor Grasshopper®. Designed structures were realized by a lost-wax casting process and compared with commercial foam specimens by a system designed for this work. The designed metal foams showed a performance superior to that of commercial metal foam; in particular, the heat thermal coefficient of designed metal foams in the better case was 870W/m2·K, almost doubled in comparison with the commercial foam tested in this work

    Pulp and paper characterization by means of artificial neural networks for effluent solid waste minimization—A case study

    No full text
    Paper mills are among the most polluting industries, responsible for many organic and inorganic compounds emissions. The fibres electro-kinetic features strongly affect the ability to retain fillers since the fillers-fibres interactions are charge induced. The control and the prediction of these parameters would represent a precious aid for process management, allowing the fillers retention enhancement, a lower environmental impact and the paper sheet properties streamlining. The work presented deals with the implementation and training of four artificial neural networks (ANNs) for the prediction of the main electrochemical and physical features of cellulose pulp and paper. First, two ANNs predict the electrochemical parameters. Following, they were applied to predict the paper sheet properties and fillers retention. The neural models implemented showed outstanding prediction performance, with R-2 in the order of 0.999 and a low mean error. The results demonstrate how Artificial Neural Networks may be a valuable instrument for paper mill pollutant reduction. However, they suggest a more inclusive investigation for a better fibres behaviour representation. (C) 2021 Elsevier Ltd. All rights reserved

    Functionalized Nickel-Graphene Coatings for Tribological Applications

    No full text
    Graphene is one of the most interesting materials because of its multiple properties that span from structural applications to energy management applications. The use of coatings composed of a metallic matrix (MMC) with graphene is currently one of the most intriguing application aspects of this innovative material, both for scientific research and industrial applications. Electrodeposition is one of the processes that can be easily implemented on an industrial scale, characterized by high cost-effectiveness and limited equipment complexity. In this experiment, the influence of current density on the morphological characteristics, thickness, and tribological performance of nickel-based coatings reinforced with simple graphene oxide (GO) and functionalized with amino-benzene (frGO) was investigated. The results allowed for the identification of interesting process parameters for controlling the process variables based on the desired outcomes, and future experimental plans were formulated to selectively investigate crucial aspects for increasing the amount of graphene within the coating

    Mechanical properties and dynamic response of 3D printed parts in PLA/P(3HB)(4HB) blends

    No full text
    Oil-based plastics can meet several technical requirements in different industrial applications at a reasonable cost, but they can cause high environmental impact. Bioderived polyesters like PLA and PHAs, are, instead, eco-friendly alternatives to reduce the environmental burden caused by conventional plastics. In this respect, dynamic response and mechanical properties of 3D printed parts made in (PLA)/Poly-3-hydroxybuutyrate-4-hydroxybutyrate(P(3HB)(4HB)) were investigated. The blends were achieved by extrusion compounding of different amount of P(3HB)(4HB) (0%, 10%, 20% and 30%) in PLA. The resulting compounds were extruded to achieve customized self-made filaments, which were reprocessed by Fused Filament Fabrication (FFF) to get the final parts. Hence, the 3D printed parts were tested to evaluate their performance, all of them showing good compromise between mechanical strength and flexibility as well as valuable dynamic response, with high potential in many fields. In particular, it has been observed that the addition of 10% of P(3HB)(4HB) is the most performing solution because it allows to obtain a 50% increase relative to the Young’s Modulus
    corecore