7 research outputs found

    Superspreaders and the spread pattern of COVID-19

    Full text link

    Multi-Stage Regulation, a Key to Reliable Adaptive

    Full text link
    ABSTRACT A general “multi-stage ” regulation model, based on linearly connected regulatory units, is formulated to demonstrate how biochemical pathways may achieve high levels of accuracy. The general mechanism, which is robust to changes in biochemical parameters, such as protein concentration and kinetic rate constants, is incorporated into a mathematical model of the bacterial chemotaxis network and provides a new framework for explaining regulation and adaptiveness in this extensively studied system. Although conventional theories suggest that methylation feedback pathways are responsible for chemotactic regulation, the model, which is deduced from known experimental data, indicates that protein interactions downstream of the bacterial receptor complex, such as CheAs and CheZ, may play a crucial and complementary role

    Immune response and virus population composition: HIV as a case study

    Full text link
    Based on the current understanding of the immune response, we present what we believe to be a new model of intrahost virus dynamics. The model takes into account the relationship between virus replication rate and the level of antigen displayed by infected cells, and shows how the cell-directed immune response controls both virus load and virus replication rate. In contrast to conventional wisdom, it shows that the predominant virus variant does not necessarily have the highest replication rate. A strong immune response produces a selective advantage for latent viruses, whereas a deteriorating immune response invites in viruses of higher replication rates. The model is analysed in light of the well-studied HIV/AIDS disease progression, and shows how a wide range of major, seemingly unrelated issues in the study of HIV may be accounted for in a simple and uni® ed manner

    Binding of the Fap2 Protein of Fusobacterium nucleatum to Human Inhibitory Receptor TIGIT Protects Tumors from Immune Cell Attack

    Get PDF
    Bacteria, such as Fusobacterium nucleatum, are present in the tumor microenvironment. However, the immunological consequences of intra-tumoral bacteria remain unclear. Here, we have shown that natural killer (NK) cell killing of various tumors is inhibited in the presence of various F. nucleatum strains. Our data support that this F. nucleatum- mediated inhibition is mediated by human, but not by mouse TIGIT, an inhibitory receptor present on all human NK cells and on various T cells. Using a library of F. nucleatum mutants, we found that the Fap2 protein of F. nucleatum directly interacted with TIGIT, leading to the inhibition of NK cell cytotoxicity. We have further demonstrated that tumor- infiltrating lymphocytes expressed TIGIT and that T cell activities were also inhibited by F. nucleatum via Fap2. Our results identify a bacterium- dependent, tumorimmune evasion mechanism in which tumors exploit the Fap2 protein of F. nucleatum to inhibit immune cell activity via TIGIT
    corecore