9 research outputs found
One-Pot Synthesis of Novel Dibenzoxanthenes, Diarylbutanes, and Calix[4]resorcinarenes via Consecutive Pyrrolidine Ring-Closure/Ring-Opening Reactions
Herein, we report the approach to the otherwise hardly accessible dibenzoxanthenes, diarylbutanes, and calix[4]resorcinarenes possessing urea moieties based on the reaction of N-(4,4-diethoxybutyl)ureas with electron-rich aromatics in strongly acidic media. Unlike the previously developed methods, the proposed approach benefits from one-pot procedure and allows to obtain the target compounds with much higher yields
Acid-Catalyzed Reaction of (4,4-Diethoxybutyl)ureas with Phenols as a Novel Approach to the Synthesis of α-Arylpyrrolidines
<div><p></p><p>1-(4,4-Diethoxybutyl)-3-alkylureas undergo intramolecular cyclization in the presence of trifluoroacetic acid and various phenols, leading to the new N-alkyl-2-arylpyrrolidine-1-carboxamides with moderate to excellent yields. It was found that these compounds undergo spontaneous solid-phase epimerization at room temperature. Advantages of the proposed approach are mild reaction conditions and no need for expensive reagents or catalysts.</p></div
The Highly Regioselective Synthesis of Novel Imidazolidin-2-Ones via the Intramolecular Cyclization/Electrophilic Substitution of Urea Derivatives and the Evaluation of Their Anticancer Activity
A series of novel 4-(het)arylimidazoldin-2-ones were obtained by the acid-catalyzed reaction of (2,2-diethoxyethyl)ureas with aromatic and heterocyclic C-nucleophiles. The proposed approach to substituted imidazolidinones benefits from excellent regioselectivity, readily available starting materials and a simple procedure. The regioselectivity of the reaction was rationalized by quantum chemistry calculations and control experiments. The anti-cancer activity of the obtained compounds was tested in vitro
Synthesis and Anticancer Evaluation of Novel 7-Aza-Coumarine-3-Carboxamides
Herein, we report the design and synthesis of novel 7-aza-coumarine-3-carboxamides via scaffold-hopping strategy and evaluation of their in vitro anticancer activity. Additionally, the improved non-catalytic synthesis of 7-azacoumarin-3-carboxylic acid is reported, which features water as the reaction medium and provides a convenient alternative to the known methods. The anticancer activity of the most potent 7-aza-coumarine-3-carboxamides against the HuTu 80 cell line is equal to that of reference Doxorubicin, while the selectivity towards the normal cell line is 9–14 fold higher
Superelectrophilic Activation of Phosphacoumarins towards Weak Nucleophiles via Brønsted Acid Assisted Brønsted Acid Catalysis
The electrophilic activation of various substrates via double or even triple protonation in superacidic media enables reactions with extremely weak nucleophiles. Despite the significant progress in this area, the utility of organophosphorus compounds as superelectrophiles still remains limited. Additionally, the most common superacids require a special care due to their high toxicity, exceptional corrosiveness and moisture sensitivity. Herein, we report the first successful application of the “Brønsted acid assisted Brønsted acid” concept for the superelectrophilic activation of 2-hydroxybenzo[e][1,2]oxaphosphinine 2-oxides (phosphacoumarins). The pivotal role is attributed to the tendency of the phosphoryl moiety to form hydrogen-bonded complexes, which enables the formation of dicationic species and increases the electrophilicity of the phosphacoumarin. This unmasks the reactivity of phosphacoumarins towards non-activated aromatics, while requiring only relatively non-benign trifluoroacetic acid as the reaction medium