61 research outputs found
In Silico Design, Synthesis and Biological Evaluation of Anticancer Arylsulfonamide Endowed with Anti-Telomerase Activity
Telomerase, a reverse transcriptase enzyme involved in DNA synthesis, has a tangible role in tumor progression. Several studies have evidenced telomerase as a promising target for developing cancer therapeutics. The main reason is due to the overexpression of telomerase in cancer cells (85–90%) compared with normal cells where it is almost unexpressed. In this paper, we used a structure-based approach to design potential inhibitors of the telomerase active site. The MYSHAPE (Molecular dYnamics SHared PharmacophorE) approach and docking were used to screen an in-house library of 126 arylsulfonamide derivatives. Promising compounds were synthesized using classical and green methods. Compound 2C revealed an interesting IC50 (33 ± 4 µM) against the K-562 cell line compared with the known telomerase inhibitor BIBR1532 IC50 (208 ± 11 µM) with an SI ~10 compared to the BALB/3-T3 cell line. A 100 ns MD simulation of 2C in the telomerase active site evidenced Phe494 as the key residue as well as in BIBR1532. Each moiety of compound 2C was involved in key interactions with some residues of the active site: Arg557, Ile550, and Gly553. Compound 2C, as an arylsulfonamide derivative, is an interesting hit compound that deserves further investigation in terms of optimization of its structure to obtain more active telomerase inhibitors
Evaluation of the IKKβ Binding of Indicaxanthin by Induced-Fit Docking, Binding Pose Metadynamics, and Molecular Dynamics
Background: Indicaxanthin, a betaxanthin belonging to the betalain class of compounds, has been recently demonstrated to exert significant antiproliferative effects inducing apoptosis of human melanoma cells through the inhibition of NF-κB as the predominant pathway. Specifically, Indicaxanthin inhibited IκBα degradation in A375 cells. In resting cells, NF-κB is arrested in the cytoplasm by binding to its inhibitor protein IκBα. Upon stimulation, IκBα is phosphorylated by the IKK complex, and degraded by the proteasome, liberating free NF-κB into the nucleus to initiate target gene transcription. Inhibition of the IKK complex leads to the arrest of the NF-κB pathway. Methods: To acquire details at the molecular level of Indicaxanthin’s inhibitory activity against hIKKβ, molecular modeling and simulation techniques including induced-fit docking (IFD), binding pose metadynamics (BPMD), molecular dynamics simulations, and MM-GBSA (molecular mechanics-generalized Born surface area continuum solvation) have been performed. Results: The computational calculations performed on the active and inactive form, and the allosteric binding site of hIKKβ, revealed that Indicaxanthin inhibits prevalently the active form of the hIKKβ. MM-GBSA computations provide further evidence of Indicaxanthin’s stability inside the active binding pocket with a binding free energy of −22.2 ± 4.3 kcal/mol with respect to the inactive binding pocket with a binding free energy of −20.7 ± 4.7 kcal/mol. BPMD and MD simulation revealed that Indicaxanthin is likely not an allosteric inhibitor of hIKKβ. Conclusion: As a whole, these in silico pieces of evidence show that Indicaxanthin can inhibit the active form of the hIKKβ adding novel mechanistic insights on its recently discovered ability to impair NF-κB signaling in melanoma A375 cells. Moreover, our results suggest the phytochemical as a new lead compound for novel, more potent IKKβ inhibitors to be employed in the treatment of cancer and inflammation-related conditions
IN THE SEARCH OF LEPTIN AGONISTS AS ANTI-OBESITY DRUGS: PROTEIN/PROTEIN DOCKING, MOLECULAR DYNAMICS, AND VIRTUAL SCREENING
The body weight control is a mechanism thinly regulated by several hormonal, metabolic, and nervous pathways (1). Recessive homozygous mutations in the ob/ob and db/db mouse strain cause extreme obesity. The products of the ob and db genes are leptin and its receptor, respectively. The leptin receptor is crucial for energy homeostasis and regulation of food uptake. Leptin is a 16 kDa hormone that is mainly secreted by fat cells into the bloodstream. Under normal circumstances, circulating leptin levels are proportionate to the fat body mass. Sensing of elevated leptin levels by the hypothalamic neurocircutry activates a negative feedback loop resulting in reduced food intake and increased energy expenditure. Decreased leptin concentrations lead to opposite effectsTherefore rational design of leptin agonists could be an appealing challenge in the battle against obesity. Unfortunately only the crystal structure of leptin is available, but not that of the leptin receptor. In this work, first, we built, by homology modelling, the leptin receptor starting from FASTA sequence and the similarity search of templates. The obtained model was used to perform a protein-protein docking with the crystal structure of leptine by means Gramm-X server, with the aim to define the complementary surfaces of the two proteins. The complex of leptin/leptin receptor was then used as starting point to carry out molecular dynamics simulations in water solvent to characterize the key residues involved into the protein-protein interaction. Snapshots of leptin were used as template to build a pharmacophore hypothesis to carry out virtual screening on a large database of compounds.
(1) Friedman, J. M., Halaas, J. L. Nature 1998, 395, 763-770
IN THE SEARCH OF LEPTIN AGONISTS AS ANTI-OBESITY DRUGS: PROTEIN/PROTEIN DOCKING, MOLECULAR DYNAMICS, AND VIRTUAL SCREENIN
Antiproliferative properties and g-quadruplex-binding of symmetrical naphtho[1,2-b:8,7-b’]dithiophene derivatives
Background: G-quadruplex (G4) forming sequences are recurrent in telomeres and promoter regions of several protooncogenes. In normal cells, the transient arrangements of DNA in G-tetrads may regulate replication, transcription, and translation processes. Tumors are characterized by uncontrolled cell growth and tissue invasiveness and some of them are possibly mediated by gene expression involving G-quadruplexes. The stabilization of G-quadruplex sequences with small molecules is considered a promising strategy in anticancer targeted therapy. Methods: Molecular virtual screening allowed us identifying novel symmetric bifunctionalized naphtho[1,2-b:8,7-b’]dithiophene ligands as interesting candidates targeting h-Telo and c-MYC G-quadruplexes. A set of unexplored naphtho-dithiophene derivatives has been synthesized and biologically tested through in vitro antiproliferative assays and spectroscopic experiments in solution. Results: The analysis of biological and spectroscopic data highlighted noteworthy cytotoxic effects on HeLa cancer cell line (GI(50) in the low μM range), but weak interactions with G-quadruplex c-MYC promoter. Conclusions: The new series of naphtho[1,2-b:8,7-b’]dithiophene derivatives, bearing the pharmacophoric assumptions necessary to stabilize G-quadruplexes, have been designed and successfully synthesized. The interesting antiproliferative results supported by computer aided rational approaches suggest that these studies are a significant starting point for a lead optimization process and the isolation of a more efficacious set of G-quadruplexes stabilizers
Antiproliferative properties and g-quadruplex-binding of symmetrical naphtho[1,2-b:8,7-b’]dithiophene derivatives
Background: G-quadruplex (G4) forming sequences are recurrent in telomeres and promoter regions of several protooncogenes. In normal cells, the transient arrangements of DNA in G-tetrads may regulate replication, transcription, and translation processes. Tumors are character-ized by uncontrolled cell growth and tissue invasiveness and some of them are possibly mediated by gene expression involving G-quadruplexes. The stabilization of G-quadruplex sequences with small molecules is considered a promising strategy in anticancer targeted therapy. Methods: Molecular virtual screening allowed us identifying novel symmetric bifunctionalized naphtho[1,2-b:8,7-b’]dithiophene ligands as interesting candidates targeting h-Telo and c-MYC G-quadruplexes. A set of unexplored naphtho-dithiophene derivatives has been synthesized and biologically tested through in vitro antiproliferative assays and spectroscopic experiments in solution. Results: The analysis of biological and spectroscopic data highlighted noteworthy cytotoxic effects on HeLa cancer cell line (GI50 in the low µM range), but weak interactions with G-quadruplex c-MYC promoter. Conclusions: The new series of naphtho[1,2-b:8,7-b’]dithiophene derivatives, bearing the pharmacophoric assump-tions necessary to stabilize G-quadruplexes, have been designed and successfully synthesized. The interesting antiproliferative results supported by computer aided rational approaches suggest that these studies are a significant starting point for a lead optimization process and the isolation of a more efficacious set of G-quadruplexes stabilizers
Exploring the SARS-CoV-2 proteome in the search of potential inhibitors via structure-based pharmacophore modeling/docking approach
To date, SARS-CoV-2 infectious disease, named COVID-19 by the World Health Organization (WHO) in February 2020, has caused millions of infections and hundreds of thousands of deaths. Despite the scientific community efforts, there are currently no approved therapies for treating this coronavirus infection. The process of new drug development is expensive and time-consuming, so that drug repurposing may be the ideal solution to fight the pandemic. In this paper, we selected the proteins encoded by SARS-CoV-2 and using homology modeling we identified the high-quality model of proteins. A structure-based pharmacophore modeling study was performed to identify the pharmacophore features for each target. The pharmacophore models were then used to perform a virtual screening against the DrugBank library (investigational, approved and experimental drugs). Potential inhibitors were identified for each target using XP docking and induced fit docking. MM-GBSA was also performed to better prioritize potential inhibitors. This study will provide new important comprehension of the crucial binding hot spots usable for further studies on COVID-19. Our results can be used to guide supervised virtual screening of large commercially available libraries
CHA on CDK2: a way to identify the best pharmacophore model for the virtual screening of new inhibitors
Cyclin-dependent kinase-2 (CDK2) is a member of serine/threonine protein kinases family. It plays an important role in the regulation events of the eukaryotic cell division cycle, especially during the G1 to S phase transition. Experimental evidences indicate that excessive expression of CDK2 should cause abnormal cell cycle regulation. Therefore, CDK2 has been considered a potential therapeutic target for cancer therapy. In this work, we used a modelling approach that incorporates flexibility based on extensive MD simulations of protein 12ligand complexes into structure-based pharmacophore modeling and virtual screening to identify new CDK2 inhibitors. One-hundred and forty-nine CDK2-inhibitors complexes were submitted to MD simulations to examine the crucial ligand-protein interactions within the complexes. Then we applied the Common Hits Approach (CHA) (1) which uses the set of coordinates saved during MD simulations, and generates for each frame a pharmacophore model. The high number of pharmacophore models resulting from the MD simulation is reduced to a few representative sets of pharmacophore models grouped in a list. This list is used to screen our in-house data for detection of new CDK-2 inhibitors.
(1) Wieder, M et al. (2017) Common Hits Approach: Combining Pharmacophore Modeling and Molecular
Dynamics Simulations. J. Chem. Inf. Model., 57: 365-385
- …