4 research outputs found
Resonant interaction of a single atom with single photons from a down-conversion source
We observe the interaction of a single trapped calcium ion with single
photons produced by a narrow-band, resonant down-conversion source [A. Haase et
al., Opt. Lett. 34, 55 (2009)], employing a quantum jump scheme. Using the
temperature dependence of the down-conversion spectrum and the tunability of
the narrow source, absorption of the down-conversion photons is quantitatively
characterized.Comment: 4 pages, 3 figure
Deterministic single-photon source from a single ion
We realize a deterministic single-photon source from one and the same calcium
ion interacting with a high-finesse optical cavity. Photons are created in the
cavity with efficiency (88 +- 17)%, a tenfold improvement over previous
cavity-ion sources. Results of the second-order correlation function are
presented, demonstrating a high suppression of two-photon events limited only
by background counts. The cavity photon pulse shape is obtained, with good
agreement between experiment and simulation. Moreover, theoretical analysis of
the temporal evolution of the atomic populations provides relevant information
about the dynamics of the process and opens the way to future investigations of
a coherent atom-photon interface
Heralded single photon absorption by a single atom
The emission and absorption of single photons by single atomic particles is a
fundamental limit of matter-light interaction, manifesting its quantum
mechanical nature. At the same time, as a controlled process it is a key
enabling tool for quantum technologies, such as quantum optical information
technology [1, 2] and quantum metrology [3, 4, 5, 6]. Controlling both emission
and absorption will allow implementing quantum networking scenarios [1, 7, 8,
9], where photonic communication of quantum information is interfaced with its
local processing in atoms. In studies of single-photon emission, recent
progress includes control of the shape, bandwidth, frequency, and polarization
of single-photon sources [10, 11, 12, 13, 14, 15, 16, 17], and the
demonstration of atom-photon entanglement [18, 19, 20]. Controlled absorption
of a single photon by a single atom is much less investigated; proposals exist
but only very preliminary steps have been taken experimentally such as
detecting the attenuation and phase shift of a weak laser beam by a single atom
[21, 22], and designing an optical system that covers a large fraction of the
full solid angle [23, 24, 25]. Here we report the interaction of single
heralded photons with a single trapped atom. We find strong correlations of the
detection of a heralding photon with a change in the quantum state of the atom
marking absorption of the quantum-correlated heralded photon. In coupling a
single absorber with a quantum light source, our experiment demonstrates
previously unexplored matter-light interaction, while opening up new avenues
towards photon-atom entanglement conversion in quantum technology.Comment: 10 pages, 4 figure